Beyond monitoring Linux OS and basic NTP statistics of your stratum 1 GPS NTP server, you can get some more values from the GPS receiver itself, namely the number of satellites (active & in view) as well as the GPS fix and dilution of precision aka DOP. This brings a few more graphs and details. Nice. Let’s go:
Category Archives: Memorandum
Monitoring a DCF77 NTP Server
Now that you’re monitoring the Linux operating system as well as the NTP server basics, it’s interesting to have a look at some more details about the DCF77 receiver. Honestly, there is only one more variable that gives a few details, namely the Clock Status Word and its Event Field. At least you have one more graph in your monitoring system. ;)
Counting NTP Clients
Wherever you’re running an NTP server: It is really interesting to see how many clients are using it. Either at home, in your company or worldwide at the NTP Pool Project. The problem is that ntp itself does not give you this answer of how many clients it serves. There are the “monstats” and “mrulist” queries but they are not reliable at all since they are not made for this. Hence I had to take another path in order to count NTP clients for my stratum 1 NTP servers. Let’s dig in:
Basic NTP Server Monitoring
Now that you have your own NTP servers up and running (such as some Raspberry Pis with external DCF77 or GPS times sources) you should monitor them appropriately, that is: at least their offset, jitter, and reach. From an operational/security perspective, it is always good to have some historical graphs that show how any service behaves under normal circumstances to easily get an idea about a problem in case one occurs. With this post I am showing how to monitor your NTP servers for offset, jitter, reach, and traffic aka “NTP packets sent/received”.
My IPv6/Routing/Cisco Lab Rack (2019)
My lab rack of 2019 consists of multiple Cisco routers and switches, as well as Juniper ScreenOS firewalls for routing purposes, a Palo Alto Networks firewall, a Juniper SRX firewall, a server for virtualization and some Raspberry Pis. That is: This rack can be used for basic Cisco courses such as CCNA or CCNP, or for even bigger BGP/OSPF or IPsec VPN scenarios since those ScreenOS firewalls are perfect routers as well. Of course, everything is IPv6 capable. Having some PoE-powered Raspberry Pis you can simulate basic client-server connections. A Juniper SA-2500 (aka Pulse Connect Secure) for remote accessing the Lab rounds things up.
I am just writing down a few thoughts on why I have “designed” the rack in that way. It’s basically a reminder for myself. ;)
NTP Authentication: Client Side
Now that we have enabled NTP authentication on our own stratum 1 NTP servers (Linux/Raspbian and Meinberg LANTIME) we need to set up this SHA-1 based authentication on our clients. Here we go for a standard Linux ntp setup:
NTP Authentication: Server Side
As already pointed out in my NTP intro blogpost Why should I run own NTP Servers? it is crucial to leverage NTP authentication to have the highest trustworthiness of your time distribution all over your network. Hence the first step is to enable NTP authentication on your own stratum 1 NTP servers, in my case two Raspberry Pis with DCF77/GPS reference clocks.
CLI Commands for Troubleshooting Infoblox
With Infoblox you’re almost doing everything through the WebUI on the Infoblox Grid Master. At least the daily business such as adding/changing/deleting/moving/whatever DNS, DHCP, and IPAM stuff. Even troubleshooting is almost done through this HTTPS-based GUI. However, some circumstances require the use of the CLI on an Infoblox appliance/VM, called “Remote Console Access” aka SSH. Here are the most common troubleshooting CLI commands for Infoblox DDI. Samples on how to use the IPMI/LOM features round things up:
F5 BIG-IP Application Level NTP Health Checks
When configuring a pool of NTP servers on a F5 BIG-IP load balancer you need to choose how to check if they are still up and running. There is no specific NTP monitor on a F5 BIG-IP that does an application layer health check (like there is for http or radius). The out-of-the-box options that can be used are only ICMP and UDP monitoring. Let’s first look at the pros and cons of using either (or both) of these monitors. Then let’s build a custom UDP monitor that does a better job at checking whether the NTP servers are still healthy.
Continue reading F5 BIG-IP Application Level NTP Health Checks
Load Balancing NTP via F5 BIG-IP LTM
As you hopefully already know, you should use at least three different NTP servers to get your time. However, there might be situations in which you can configure only one single NTP server, either via static IP addresses or via an FQDN. To overcome this single point of failure you can use an external load balancing server such as F5 LTM (in HA of course) to forward your NTP queries to one of many NTP servers. Here are some hints:
NTP Server via GPS on a Raspberry Pi
This post shows how to use a GPS receiver with a Raspberry Pi to build a stratum 1 NTP server. I am showing how to solder and use the GPS module (especially with its PPS pin) and listing all Linux commands to set up and check the receiver and its NTP part, which is IPv6-only in my case. Some more hints to increase the performance of the server round things off. In summary, this is a nice “do it yourself” project with a working stratum 1 NTP server at really low costs. Great. However, keep in mind that you should not rely on such projects in enterprise environments that are more focused on reliability and availability (which is not the case on self soldered modules and many config file edits).
NTP Server via DCF77 on a Raspberry Pi
In this tutorial, I will show how to set up a Raspberry Pi with a DCF77 receiver as an NTP server. Since the external radio clock via DCF77 is a stratum 0 source, the NTP server itself is stratum 1. I am showing how to connect the DCF77 module and I am listing all relevant commands as a step by step guide to install the NTP things. With this tutorial, you will be able to operate your own stratum 1 NTP server. Nice DIY project. ;) However, keep in mind that you should only use it on a private playground and not on an enterprise network that should consist of high reliable NTP servers rather than DIY Raspberry Pis. Anyway, let’s go:
Packet Capture: Network Time Protocol (NTP)
What’s the first step in a networker’s life if he wants to work with an unknown protocol: he captures and wiresharks it. ;) Following is a downloadable pcap in which I am showing the most common NTP packets such as basic client-server messages, as well as control and authenticated packets. I am also showing how to analyze the delta time with Wireshark, that is: how long an NTP server needs to respond to a request.
Continue reading Packet Capture: Network Time Protocol (NTP)
Infoblox Features & Licenses Naming Clarity
Working with Infoblox can be challenging when it comes to their naming of features, licenses, marketing slides, and GUI options. So let’s bring some clarity into this chaos. :D I have listed the most common DNS security features and their corresponding Infoblox names. I hope you folks can use it as well.
Continue reading Infoblox Features & Licenses Naming Clarity
My Network Gadgets
This post is not about software but hardware tools for network admins. Which network gadgets am I using during my daily business? At least three, namely the Airconsole, the Pockethernet and the ProfiShark, which help me in connecting to serial ports, testing basic network connectivity, and capturing packets in a high professional way. Come in and have a look at how I’m working.