More and more security-related devices are capable of sending syslog messages via an encrypted TLS channel. So does the well-known Meinberg LANTIME NTP server with its “LTOS” operating system. (And all the other LTOS-based NTP servers like the IMS or SyncFire series.) Here’s how you can configure it:
Tag Archives: Meinberg LANTIME
NTP Server’s Delta Time
This is a guest blogpost by Jasper Bongertz. His own blog is at blog.packet-foo.com.
Running your own NTP server(s) is usually a good idea. Even better if you know that they’re working correctly and serve their answers efficiently and without a significant delay, even under load. This is how you can use Wireshark to analyze the NTP delta time for NTP servers:
Monitoring a Meinberg LANTIME NTP Server
Monitoring a Meinberg LANTIME appliance is much easier than monitoring DIY NTP servers. Why? Because you can use the provided enterprise MIB and load it into your SNMP-based monitoring system. Great. The MIB serves many OIDs such as the firmware version, reference clock state, offset, client requests, and even more specific ones such as “correlation” and “field strength” in case of my phase-modulated DCF77 receiver (which is called “PZF” by Meinberg). And since the LANTIME is built upon Linux, you can use the well-known system and interfaces MIBs as well for basic coverage. Let’s dig into it:
Meinberg LANTIME NTP Authentication
Operating NTP in a secure manner requires the usage of NTP authentication, refer to my Why should I run own NTP Servers? blogpost. Using the Meinberg LANTIME NTP appliance with NTP authentication is quite simply since it requires just a few clicks. Even adding more and more keys (which requires manual work on any other Linux ntp installation) is done within clicks. That’s the way it should be.
NTP Appliance: Meinberg LANTIME & SyncFire
In case you’re responsible for an enterprise network or data center you should care about NTP. Refer to “Why should I run own NTP Servers?“. As a hobby technician you might first think about Raspberry Pis with self soldered GPS modules. Well, good idea to play with, but not reliable at all. Way to unstable, hard to update, no alerting, no service agreements, and so on.
Hence you should use a dedicated NTP appliance such as the Meinberg LANTIME NTP Time Servers. I am using a LANTIME M200 with a DCF77 correlation receiver in my lab. With this post I am showing how to set up this NTP server, giving some insights, and listing the advantages of such an appliance compared to a Raspberry Pi or any other DIY server approach. My wish list aka feature requests to this product round things up.
Why should I run own NTP Servers?
… since we all can use “pool.ntp.org”? Easy answer: Many modern (security) techniques rely on accurate time. Certificate validation, two-factor authentication, backup auto-deletion, logs generation, and many more. Meanwhile, we use an unauthenticated protocol (via stateless UDP) from unauthenticated sources (NTP pool) to rely on! Really?
If you are using a couple of different NTP sources it might be not that easy for an attacker to spoof your time – though not unfeasible at all. And think about small routers with VPN endpoints and DNSSEC resolving enabled, or IoT devices such as cameras or door openers – they don’t even have a real-time clock with a battery inside. They fully rely on NTP.
This is what this blogpost series is all about. Let’s dig into it. ;)