Tag Archives: Ultimate PCAP

Joining an Active Directory: A Packet Capture

What happens on the network if you’re joining a Microsoft Active Directory domain? Which protocols are used? As I suspected, it’s a bit more complex than just seeing a single known protocol like HTTPS. ;)

Since a PCAP is worth a thousand words, I captured the process of a Windows PC joining an AD. Let’s have a look at it with Wireshark and NetworkMiner. And, as always, you’re welcome to download the packet capture to analyse it by yourself.

Continue reading Joining an Active Directory: A Packet Capture

More Capture Details III

Another update of the Ultimate PCAP is available. Again, there are some special new packets in there which I want to point out here. Feel free to download the newest version to examine those new protocols and packets by yourself. Featuring: SNMPv3, WoL, IPMI, HSRP, Zabbix, Pile of Poo, and Packet Comments. ✅

Continue reading More Capture Details III

Stateful DHCPv6 Capture (along with Relaying)

For my IPv6 training classes, I was missing a capture of a stateful DHCPv6 address assignment. That is: M-flag within the RA, followed by DHCPv6 messages handing out an IPv6 address among others. Therefore, I set up a DHCPv6 server on an Infoblox grid and furthermore used a Palo Alto NGFW as a DHCPv6 relay to it. I captured on two points: from the client’s point of view (getting to the relay) and from the server’s point of view (unicast messages from the relay). And since I was already there anyway, I additionally captured the same process for DHCPv4. So, here we go:

Continue reading Stateful DHCPv6 Capture (along with Relaying)

Who sends TCP RSTs?

At SharkFest’22 EU, the Annual Wireshark User and Developer Conference, I attended a beginners’ course called “Network Troubleshooting from Scratch”, taught by the great Jasper Bongertz. In the end, we had some high-level discussions concerning various things, one of them was the insight that TCP RSTs are not only sent from a server in case the port is closed, but are also commonly sent (aka spoofed) from firewalls in case a security policy denies the connection. Key question: Can you distinguish between those spoofed vs. real TCP RSTs? Initially, I thought: no, you can’t, cause the firewalls out there do a great job.

It turned out: you can!

Continue reading Who sends TCP RSTs?

Accessing IPv6-only Resources via Legacy IP: NAT46 on a FortiGate

In general, Network Address Translation (NAT) solves some problems but should be avoided wherever possible. It has nothing to do with security and is only a short-term solution on the way to IPv6. (Yes, I know, the last 20 years have proven that NAT is used everywhere every time. ?) This applies to all kinds of NATs for IPv4 (SNAT, DNAT, PAT) as well as for NPTv6 and NAT66.

However, there are two types of NATs that do not only change the network addresses but do a translation between the two Internet Protocols, that is IPv4 <-> IPv6 and vice versa. Let’s focus on NAT46 this time. In which situations is it used and why? Supplemented by a configuration guide for the FortiGates, a downloadable PCAP and Wireshark screenshots.

Continue reading Accessing IPv6-only Resources via Legacy IP: NAT46 on a FortiGate

More Capture Details

In the previous post, I released my Ultimate PCAP which includes every single pcap I had so far on my blog. But that’s not all: I have some packets in there that were not yet published up to now. That is, here are some more details about those (probably well-known) protocols. These are:

Continue reading More Capture Details

The Ultimate PCAP

For the last couple of years, I captured many different network and upper-layer protocols and published the pcaps along with some information and Wireshark screenshots on this blog. However, it always takes me some time to find the correct pcap when I am searching for a concrete protocol example. There are way too many pcaps out there.

This is supposed to change now:

I’m publishing a single pcap meant to be a single point of source for Wireshark samples. It summarises *all* previous ones from my blog and even adds some more protocols and details. I will constantly add more packets to this pcap if I have some. Currently, it has 80+ different protocols and hundreds of variants, such as IPv6 and legacy IP traffic, different DNS query types, ICMP error codes, and so on.

Continue reading The Ultimate PCAP