Tag Archives: pcap

Advanced Ping: httping, dnsping, smtpping

I really love ping! It is easy to use and directly reveals whether the network works or not. Refer to Why Ping is no Security Flaw! (But your Friend) and Advanced Tracerouting. At least outgoing pings (from trust to untrust) should be allowed without any security concerns. However, many companies are denying these ICMP echo-requests from untrust into the DMZ which makes it difficult to test whether all servers are up and running.

I was sitting at the customer’s site replacing the DMZ firewall. Of course I wanted to know (from the outside) whether all servers are connected correctly (NAT) and whether the firewall permits the connections (policy). However, ping was not allowed. Therefore I used several layer 7 ping tools that generate HTTP, DNS, or SMTP sessions (instead of ICMP echo-requests) and revealed whether the services (and not only the servers) were running. Great!

This post shows the installation and usage of httping, dnsping, and smtpping on a Linux machine, in my case a Ubuntu server 14.04.4 LTS, as well as some Wireshark screenshots from captured sessions. Finally, a pcap file can be downloaded that shows the sample runs of all three tools.

Continue reading Advanced Ping: httping, dnsping, smtpping

OSPFv3 for IPv6 Lab: Cisco, Fortinet, Juniper, Palo Alto, Quagga

Similar to my test lab for OSPFv2, I am testing OSPFv3 for IPv6 with the following devices: Cisco ASA, Cisco Router, Fortinet FortiGate, Juniper SSG, Palo Alto, and Quagga Router. I am showing my lab network diagram and the configuration commands/screenshots for all devices. Furthermore, I am listing some basic troubleshooting commands. In the last section, I provide a Tcpdump/Wireshark capture of an initial OSPFv3 run.

I am not going into deep details of OSPFv3 at all. But this lab should give basic hints/examples for configuring OSPFv3 for all of the listed devices.

Continue reading OSPFv3 for IPv6 Lab: Cisco, Fortinet, Juniper, Palo Alto, Quagga

Basic IPv6 Messages: Wireshark Capture

When explaining IPv6 I am always showing a few Wireshark screenshots to give a feeling on how IPv6 looks like. Basically, the stateless autoconfiguration feature (SLAAC), DHCPv6, Neighbor Discovery, and a simple ping should be seen/understood by any network administrator before using the new protocol.

Therefore I captured the basic IPv6 autoconfiguration with a Knoppix Linux behind a Telekom Speedport router (German ISP, dual-stack) and publish this capture file here. I am using this capture to explain the basic IPv6 features.

Continue reading Basic IPv6 Messages: Wireshark Capture

Advanced Tracerouting

A common misunderstanding of traceroute is that it fully relies on ping. “If I block ping at my firewall, no one can use traceroute to reveal my internal routing path”. Unfortunately, this is not true. If traceroute is used with TCP SYN packets on permitted TCP/UDP ports, all intermediary firewalls will handle the IP packets with TTL = 0 corresponding to the RFCs and will reply with an ICMP time exceeded packet to the source.

In this post, I am listing an example that uses traceroute with TCP port 25 (SMTP) to traverse a firewall. A sample pcap file can be downloaded while some Wireshark screenshots show a few details.

Continue reading Advanced Tracerouting

At a Glance: HTTP Proxy Packets vs. Normal HTTP Packets

I am currently in touch with a few HTTP proxy installations. As every time when troubleshooting network issues, I am looking at Wireshark on the network and trying to understand the different packets.

Here is a short overview of the differences between HTTP requests that are sent directly to the destination and HTTP requests that are sent via a proxy. Wireshark screenshots and a downloadable pcap round things up.

Continue reading At a Glance: HTTP Proxy Packets vs. Normal HTTP Packets