Tag Archives: Wireshark

A Little Printing Please – Packet Capture

Uh, I wasn’t aware of so many different printing protocols. Do you? While I was trying to solve a little printing problem I took a packet capture of three different printing variants over TCP/IP: Raw via TCP port 9100, LPD/LPR via TCP port 515, and Apple’s AirPrint which uses the Internet Printing Protocol IPP. As always, you can download this pcap and have a look at it by yourself.

Continue reading A Little Printing Please – Packet Capture

SharkFest’19 EUROPE: IPv6 Crash Course

I gave a session about IPv6 at SharkFest’19 EUROPE, the annual Wireshark developer and user community conference, named “IPv6 Crash Course: Understanding IPv6 as seen on the wire“. The talk is about the IPv6 basics, which are: IPv6 addresses & address assignment, link-layer address resolution, and ICMPv6. Tips for using Wireshark coloring rules and display filters round things up.

As I have not yet published the slides, here they are. Unfortunately, we were not able to record the session due to technical problems. Neither the video nor the audio. ;( Hence, here are only mere slides.

Continue reading SharkFest’19 EUROPE: IPv6 Crash Course

More Capture Details

In the previous post, I released my Ultimate PCAP which includes every single pcap I had so far on my blog. But that’s not all: I have some packets in there that were not yet published up to now. That is, here are some more details about those (probably well-known) protocols. These are:

Continue reading More Capture Details

The Ultimate PCAP

For the last couple of years, I captured many different network and upper-layer protocols and published the pcaps along with some information and Wireshark screenshot on this blog. However, it sometimes takes me some time to find the correct pcap when I am searching for a concrete protocol example. There are way too many pcaps out there.

This is supposed to change now:

I’m publishing a single pcap meant to be a single point of source for Wireshark samples. It is summarizing *all* previous ones from my blog and even adding some more protocols and details. I will constantly add more packets to this pcap if I have some. Currently, it has > 50 different protocols and hundreds of variants, such as IPv6 and legacy IP traffic, different DNS query types, ICMP error codes, and so on.

Continue reading The Ultimate PCAP

VoIP Captures

VoIP calls, using the network protocols SIP/SDP and RTP, are the de-facto standard when it comes to voice calls. Wireshark offers some special features to analyze those calls and RTP streams – even with a nice “Play Streams” option, which discretely decodes your calls. Ouch. Again and again, frightening which privacy-related protocols are completely unencrypted on the Internet!

Here are some hints for Wireshark as well as a downloadable pcap with three calls in there. ;) Have fun!

Continue reading VoIP Captures

DNS Capture – The Records Edition

Some time ago I published a post called DNS Test Names & Resource Records which lists many different FQDNs with lots of different RRs. You can use those public available DNS names to test your DNS servers or the like. However, I was missing a packet capture showing all these resource records as they appear on the wire. So now, here it is. If you are searching for some packets to test your tools for whatever reason, feel free to download this pcap.

Continue reading DNS Capture – The Records Edition

Stig Nygaard - Nighttime

Setting up NTS-Secured NTP with NTPsec

This is a guest blogpost by Martin Langer, Ph.D. student for “Secured Time Synchronization Using Packet-Based Time Protocols” at Ostfalia University of Applied Sciences, Germany.


In the previous posts, I already introduced the Network Time Security (NTS) protocol and described the most important features. Although the specification process has not been completed, there are already some independent NTS implementations and public time servers (IETF106). NTPsec is one of the important representatives of this series and already offers an advanced NTS solution. In this post, I’ll give you a short guide to setting up an NTS-secured NTP client/server with NTPsec.

Continue reading Setting up NTS-Secured NTP with NTPsec

Basic TCP and UDP Demos w/ netcat and telnet

I am currently working on a network & security training, module “OSI Layer 4 – Transport”. Therefore I made a very basic demo of a TCP and UDP connection in order to see the common “SYN, SYN-ACK, ACK” for TCP while none of them for UDP, “Follow TCP/UDP Stream” in Wireshark, and so on. I wanted to show that it’s not that complicated at all. Every common application/service simply uses these data streams to transfer data aka bytes between a client and a server.

That is: Here are the Linux commands for basic lab, a downloadable pcap, and, as always, some Wireshark screenshots:

Continue reading Basic TCP and UDP Demos w/ netcat and telnet

Incorrect Working IPv6 NTP Clients/Networks

During my analysis of NTP and its traffic to my NTP servers listed in the NTP Pool Project I discovered many ICMP error messages coming back to my servers such as port unreachables, address unreachables, time exceeded or administratively prohibited. Strange. In summary, more than 3 % of IPv6-enabled NTP clients failed in getting answers from my servers. Let’s have a closer look:

Continue reading Incorrect Working IPv6 NTP Clients/Networks

NTP Server’s Delta Time

This is a guest blogpost by Jasper Bongertz. His own blog is at blog.packet-foo.com.


Running your own NTP server(s) is usually a good idea. Even better if you know that they’re working correctly and serve their answers efficiently and without a significant delay, even under load. This is how you can use Wireshark to analyze the NTP delta time for NTP servers:

Continue reading NTP Server’s Delta Time

DNS Capture: UDP, TCP, IP-Fragmentation, EDNS, ECS, Cookie

It’s not always this simple DNS thing such as “single query – single answer, both via UDP”. Sometimes you have some more options or bigger messages that look and behave differently on the network. For example: IP fragmentation for larger DNS answers that do not fit into a single UDP datagram (hopefully not after the DNS flag day 2020 anymore), or DNS via TCP, or some newer options within the EDNS space such as “EDNS Client Subnet” (ECS) or DNS cookies.

I won’t explain any details about those options, but I am publishing a pcap with that kind of packets along with some Wireshark screenshots. Feel free to dig into it.

Continue reading DNS Capture: UDP, TCP, IP-Fragmentation, EDNS, ECS, Cookie

6in4 Traffic Capture

Since my last blogposts covered many 6in4 IPv6 tunnel setups (1, 2, 3) I took a packet capture of some tunneled IPv6 sessions to get an idea how these packets look like on the wire. Feel free to download this small pcap and to have a look at it by yourself.

A couple of spontaneous challenges from the pcap round things up. ;)

Continue reading 6in4 Traffic Capture

F5 BIG-IP Application Level NTP Health Checks

When configuring a pool of NTP servers on a F5 BIG-IP load balancer you need to choose how to check if they are still up and running. There is no specific NTP monitor on a F5 BIG-IP that does an application layer health check (like there is for http or radius). The out-of-the-box options that can be used are only ICMP and UDP monitoring. Let’s first look at the pros and cons of using either (or both) of these monitors. Then let’s build a custom UDP monitor that does a better job at checking whether the NTP servers are still healthy.

Continue reading F5 BIG-IP Application Level NTP Health Checks